79 research outputs found

    Posterior longitudinal ligament status in cervical spine bilateral facet dislocations

    Get PDF
    Objective: It is generally accepted that cervical spine bilateral facet dislocation results in complete disruption of the posterior longitudinal ligament. The goal of this study was to evaluate the integrity of numerous spine-stabilizing structures by MRI, and to determine if any associations between injury patterns exist with respect to the posterior longitudinal ligament status. Design: Retrospective case series. Patients: A retrospective review was performed of 30 cervical spine injury subjects with bilateral facet dislocation. Assessment of 1.5T MRI images was carried out for: intervertebral disc disruption, facet fracture, and ligamentous disruption. Statistical analyses were performed to evaluate for associations between various injury patterns and posterior longitudinal ligament status. Results: The frequency of MRI abnormalities was: anterior longitudinal ligament disruption (26.7%), disc herniation or disruption (90%), posterior longitudinal ligament disruption (40%), facet fracture (63.3%) and disruption of the posterior column ligament complex (97%). There were no significant associations between injury to the posterior longitudinal ligament and other structures. Compared to surgical reports, MRI was accurate for determining the status for 24 of 26 ligaments (three of three anterior longitudinal ligament, seven of nine posterior longitudinal ligament, and 14 of 14 posterior column ligament complex) but generated false negatives in two instances (in both MRI showed an intact posterior longitudinal ligament that was torn at surgery). Conclusions: In contradis¬tinction to the existing concept, the posterior longitudinal ligament can remain intact in a substantial propor¬tion of hyperflexion injuries that produce bilateral cervical facet dislocation. Posterior longitudinal ligament integrity is not associated with any other injury pattern related to the anterior longitudinal ligament, intervertebral disc or facet fracture

    Neurosurgical Applications of Magnetic Resonance Diffusion Tensor Imaging

    Get PDF
    Magnetic Resonance (MR) Diffusion Tensor Imaging (DTI) is a rapidly evolving technology that enables the visualization of neural fiber bundles, or white matter (WM) tracts. There are numerous neurosurgical applications for MR DTI including: (1) Tumor grading and staging; (2) Pre-surgical planning (determination of resectability, determination of surgical approach, identification of WM tracts at risk); (3) Intraoperative navigation (tumor resection that spares WM damage, epilepsy resection that spares WM damage, accurate location of deep brain stimulation structures); (4) Post-operative assessment and monitoring (identification of WM damage, identification of tumor recurrence). Limitations of MR DTI include difficulty tracking small and crossing WM tracts, lack of standardized data acquisition and post-processing techniques, and practical equipment, software, and timing considerations. Overall, MR DTI is a useful tool for planning, performing, and following neurosurgical procedures, and has the potential to significantly improve patient care. Technological improvements and increased familiarity with DTI among clinicians are next steps

    Impact of Baseline Magnetic Resonance Imaging on Neurologic, Functional, and Safety Outcomes in Patients With Acute Traumatic Spinal Cord Injury

    Get PDF
    Study Design: Systematic review. Objective: To perform a systematic review to evaluate the utility of magnetic resonance imaging (MRI) in patients with acute spinal cord injury (SCI). Methods: An electronic search of Medline, EMBASE, the Cochrane Collaboration Library, and Google Scholar was conducted for literature published through May 12, 2015, to answer key questions associated with the use of MRI in patients with acute SCI. Results: The literature search yielded 796 potentially relevant citations, 8 of which were included in this review. One study used MRI in a protocol to decide on early surgical decompression. The MRI-protocol group showed improved outcomes; however, the quality of evidence was deemed very low due to selection bias. Seven studies reported MRI predictors of neurologic or functional outcomes. There was moderate-quality evidence that longer intramedullary hemorrhage (2 studies) and low-quality evidence that smaller spinal canal diameter at the location of maximal spinal cord compression and the presence of cord swelling are associated with poor neurologic recovery. There was moderate-quality evidence that clinical outcomes are not predicted by SCI lesion length and the presence of cord edema. Conclusions: Certain MRI characteristics appear to be predictive of outcomes in acute SCI, including length of intramedullary hemorrhage (moderate-quality evidence), canal diameter at maximal spinal cord compression (low-quality evidence), and spinal cord swelling (low-quality evidence). Other imaging features were either inconsistently (presence of hemorrhage, maximal canal compromise, and edema length) or not associated with outcomes. The paucity of literature highlights the need for well-designed prospective studies. © 2017, © The Author(s) 2017

    Harmonization of Multi-Site Diffusion Tensor Imaging Data for Cervical and Thoracic Spinal Cord at 1.5 T and 3 T Using Longitudinal ComBat

    Get PDF
    MRI scanner hardware, field strengths, and sequence parameters are major variables in diffusion studies of the spinal cord. Reliability between scanners is not well known, particularly for the thoracic cord. DTI data was collected for the entire cervical and thoracic spinal cord in thirty healthy adult subjects with different MR vendors and field strengths. DTI metrics were extracted and averaged for all slices within each vertebral level. Metrics were examined for variability and then harmonized using longitudinal ComBat (longComBat). Four scanners were used: Siemens 3 T Prisma, Siemens 1.5 T Avanto, Philips 3 T Ingenia, Philips 1.5 T Achieva. Average full cord diffusion values/standard deviation for all subjects and scanners were FA: 0.63, σ = 0.10, MD: 1.11, σ = 0.12 × 10−3 mm2/s, AD: 1.98, σ = 0.55 × 10−3 mm2/s, RD: 0.67, σ = 0.31 × 10−3 mm2/s. FA metrics averaged for all subjects by level were relatively consistent across scanners, but large variability was found in diffusivity measures. Coefficients of variation were lowest in the cervical region, and relatively lower for FA than diffusivity measures. Harmonized metrics showed greatly improved agreement between scanners. Variability in DTI of the spinal cord arises from scanner hardware differences, pulse sequence differences, physiological motion, and subject compliance. The use of longComBat resulted in large improvement in agreement of all DTI metrics between scanners. This study shows the importance of harmonization of diffusion data in the spinal cord and potential for longitudinal and multisite clinical research and clinical trials

    Discordant Responses Between Primary Head and Neck Tumors and Nodal Metastases Treated With Neoadjuvant Nivolumab: Correlation of Radiographic and Pathologic Treatment Effect.

    Get PDF
    PD-1 blockade represents a promising treatment in patients with head and neck squamous cell carcinoma (HNSCC). We analyzed results of a neoadjuvant randomized window-of-opportunity trial of nivolumab plus/minus tadalafil to investigate whether immunotherapy-mediated treatment effects vary by site of involvement (primary tumor, lymph nodes) and determine how radiographic tumor shrinkage correlates with pathologic treatment effect. Patients and Methods: Forty-four patients enrolled in trial NCT03238365 were treated with nivolumab 240 mg intravenously on days 1 and 15 with or without oral tadalafil, as determined by random assignment, followed by surgery on day 31. Radiographic volumetric response (RVR) was defined as percent change in tumor volume from pretreatment to posttreatment CT scan. Responders were defined as those with a 10% reduction in the volume of the primary tumor or lymph nodes (LN). Pathologic treatment effect (PTE) was defined as the area showing fibrosis or lymphohistiocytic inflammation divided by total tumor area. Results: Sixteen of 32 patients (50%) with pathologic evidence of LN involvement exhibited discordant PTE between primary sites and LN. In four patients with widely discordant adjacent LN, increased PTE was associated with increased infiltration of tumor CD8+ T cells and CD163+ macrophages, whereas stromal regulatory T cells were associated with low nodal PTE. RVR correlated with PTE at both primary tumor (slope = 0.55, p \u3c 0.001) and in LN (slope = 0.62, p \u3c 0.05). 89% (16/18) of radiographic non-responders with T1-T3 primary sites had no (n = 7) or minimal PTE (n = 9), whereas 15/17 (88%) of radiographic responders had moderate (n = 12) or complete (n = 3) PTE. Conclusion: Nivolumab often induces discordant treatment effects between primary tumor sites and metastatic lymph nodes within subjects. This treatment discordance was also demonstrated in adjacent lymph nodes, which may correlate with local immune cell makeup. Finally, although these data were generated by a relatively small population size, our data support the use of early radiographic response to assess immunotherapy treatment effect in HNSCC

    Opportunistic Detection of Type 2 Diabetes Using Deep Learning From Frontal Chest Radiographs

    Get PDF
    Deep learning (DL) models can harness electronic health records (EHRs) to predict diseases and extract radiologic findings for diagnosis. With ambulatory chest radiographs (CXRs) frequently ordered, we investigated detecting type 2 diabetes (T2D) by combining radiographic and EHR data using a DL model. Our model, developed from 271,065 CXRs and 160,244 patients, was tested on a prospective dataset of 9,943 CXRs. Here we show the model effectively detected T2D with a ROC AUC of 0.84 and a 16% prevalence. The algorithm flagged 1,381 cases (14%) as suspicious for T2D. External validation at a distinct institution yielded a ROC AUC of 0.77, with 5% of patients subsequently diagnosed with T2D. Explainable AI techniques revealed correlations between specific adiposity measures and high predictivity, suggesting CXRs\u27 potential for enhanced T2D screening
    • …
    corecore