36,810 research outputs found

    Performance Analysis of Best Relaying Protocol Selection with Interferences at Relays

    Get PDF
    In this paper, we investigate the performance of selecting the best protocol between amplify and forward (AF) and decode and forward (DF) in multiple relay networks with multiple interferences at relays. In the selection scheme, the best protocol between AF and DF is selected depending on the comparisons of signal-to-interference and noise ratio (SINR) for all source-relay links. All relays measure the received SINR to decide forwarding signal or not. When SINR is above a certain threshold then DF is used otherwise AF is used. Particularly, we develop an accurate mathematical model for best relaying protocol by considering the effect of interferences to our scheme. Firstly, we derive the asymptotic closed form expression for the symbol error rate (SER) for the system under study. Also we derive an upper and lower bound of symbol error rate and show how they were tight with exact SER. Furthermore an approximate expression for the outage probability is derived. Numerical results are finally presented to validate the theoretical analysis with a different number of relays

    Heitler-London model for acceptor-acceptor interactions in doped semiconductors

    Full text link
    The interactions between acceptors in semiconductors are often treated in qualitatively the same manner as those between donors. Acceptor wave functions are taken to be approximately hydrogenic and the standard hydrogen molecule Heitler-London model is used to describe acceptor-acceptor interactions. But due to valence band degeneracy and spin-orbit coupling, acceptor states can be far more complex than those of hydrogen atoms, which brings into question the validity of this approximation. To address this issue, we develop an acceptor-acceptor Heitler-London model using single-acceptor wave functions of the form proposed by Baldereschi and Lipari, which more accurately capture the physics of the acceptor states. We calculate the resulting acceptor-pair energy levels and find, in contrast to the two-level singlet-triplet splitting of the hydrogen molecule, a rich ten-level energy spectrum. Our results, computed as a function of inter-acceptor distance and spin-orbit coupling strength, suggest that acceptor-acceptor interactions can be qualitatively different from donor-donor interactions, and should therefore be relevant to the control of two-qubit interactions in acceptor-based qubit implementations, as well as the magnetic properties of a variety of p-doped semiconductor systems. Further insight is drawn by fitting numerical results to closed-form energy-level expressions obtained via an acceptor-acceptor Hubbard model.Comment: 19 pages, 10 figures, text revised, figure quality improved, additional references adde

    Blind image separation based on exponentiated transmuted Weibull distribution

    Full text link
    In recent years the processing of blind image separation has been investigated. As a result, a number of feature extraction algorithms for direct application of such image structures have been developed. For example, separation of mixed fingerprints found in any crime scene, in which a mixture of two or more fingerprints may be obtained, for identification, we have to separate them. In this paper, we have proposed a new technique for separating a multiple mixed images based on exponentiated transmuted Weibull distribution. To adaptively estimate the parameters of such score functions, an efficient method based on maximum likelihood and genetic algorithm will be used. We also calculate the accuracy of this proposed distribution and compare the algorithmic performance using the efficient approach with other previous generalized distributions. We find from the numerical results that the proposed distribution has flexibility and an efficient resultComment: 14 pages, 12 figures, 4 tables. International Journal of Computer Science and Information Security (IJCSIS),Vol. 14, No. 3, March 2016 (pp. 423-433

    NASA Low-Speed Centrifugal Compressor for Fundamental Research

    Get PDF
    A centrifugal compressor facility being built by the NASA Lewis Research Center is described; its purpose is to obtain benchmark experimental data for internal flow code verification and modeling. The facility will be heavily instrumented with standard pressure and temperature probes and have provisions for flow visualization and laser Doppler velocimetry. The facility will accommodate rotational speeds to 2400 rpm and will be rated at pressures to 1.25 atm. The initial compressor stage for testing is geometrically and dynamically representative of modern high-performance stages with the exception of Mach number levels. Design exit tip speed for the initial stage is 500 ft/sec with a pressure ratio of 1.17. The rotor exit backsweep is 55 deg from radial

    Advances in Chimeric Antigen Receptor T-Cell Therapies for Solid Tumors.

    Get PDF
    In 2017, the US Food and Drug Administration approved the first two novel cellular immunotherapies using synthetic, engineered receptors known as chimeric antigen receptors (CARs), tisagenlecleucel (Kymriah) and axicabtagene ciloleucel (Yescarta), expressed by patient-derived T cells for the treatment of hematological malignancies expressing the B-cell surface antigen CD19 in both pediatric and adult patients. This approval marked a major milestone in the use of antigen-directed living drugs for the treatment of relapsed or refractory blood cancers, and with these two approvals, there is increased impetus to expand not only the target antigens but also the tumor types that can be targeted. This state-of-the-art review will focus on the challenges, advances, and novel approaches being used to implement CAR T-cell immunotherapy for the treatment of solid tumors
    corecore