828 research outputs found

    Anisotropic cosmological solutions to the Y(R)F2Y(R)F^2 gravity

    Get PDF
    We investigate anisotropic cosmological solutions of the theory with non-minimal couplings between electromagnetic fields and gravity in Y(R)F2Y(R) F^2 form. After we derive the field equations by the variational principle, we look for spatially flat cosmological solutions with magnetic fields or electric fields. Then we give exact anisotropic solutions by assuming the hyperbolic expansion functions. We observe that the solutions approach to the isotropic case in late-times.Comment: 16 pages, 5 figure

    Negative thermal expansion in the Prussian Blue analog Zn3[Fe(CN)6]2: X-ray diffraction and neutron vibrational studies

    Full text link
    The cubic Prussian Blue (PB) analog, Zn3 [Fe(CN)6]2, has been studied by X-ray powder diffraction and inelastic neutron scattering (INS). X-ray data collected at 300 and 84 K revealed negative thermal expansion (NTE) behaviour for this material. The NTE coefficient was found to be -31.1 x 10-6 K-1. The neutron vibrational spectrum for Zn3[Fe(CN)6]2.xH2O, was studied in detail. The INS spectrum showed well-defined, well-separated bands corresponding to the stretching of and deformation modes of the Fe and Zn octahedra, all below 800 cm-1.Comment: 4 pages, 3 figure

    Roadmap to a net-zero carbon cement sector: Strategies, innovations and policy imperatives

    Get PDF
    The cement industry plays a significant role in global carbon emissions, underscoring the urgent need for measures to transition it toward a net-zero carbon footprint. This paper presents a detailed plan to this end, examining the current state of the cement sector, its carbon output, and the imperative for emission reduction. It delves into various low-CO2 technologies and emerging innovations such as alkali-activated cements, calcium looping, electrification, and bio-inspired materials. Economic and policy factors, including cost assessments and governmental regulations, are considered alongside challenges and potential solutions. Concluding with future prospects, the paper offers recommendations for policymakers, industry players, and researchers, highlighting the roadmap's critical role in achieving a carbon-neutral cement sector

    Spinor couplings to dilaton gravity induced by the dimensional reduction of topologically massive gravity

    Full text link
    A Dirac spinor is coupled to topologically massive gravity and the D=3 dimensional action is reduced to D=2 dimensions with a metric that includes both the electromagnetic potential 1-form A and a dilaton scalar \phi. The dimensionnaly reduced spinor is made a mass eigenstate with a (local) chiral rotation. The non-trivial interactions thus induced are discussed.Comment: 8 pages, no figure

    Cement-based solidification of nuclear waste: Mechanisms, formulations and regulatory considerations

    Get PDF
    This review paper provides a comprehensive analysis of cement-based solidification and immobilisation of nuclear waste. It covers various aspects including mechanisms, formulations, testing and regulatory considerations. The paper begins by emphasizing the importance of nuclear waste management and the associated challenges. It explores the mechanisms and principles in cement-based solidification, with a particular focus on the interaction between cement and nuclear waste components. Different formulation considerations are discussed, encompassing factors such as cement types, the role of additives and modifiers. The review paper also examines testing and characterisation methods used to assess the physical, chemical and mechanical properties of solidified waste forms. Then the paper addresses the regulatory considerations and compliance requirements for cement-based solidification. The paper concludes by critically elaborating on the current challenges, emerging trends and future research needs in the field. Overall, this review paper offers a comprehensive overview of cement-based solidification, providing valuable insights for researchers, practitioners and regulatory bodies involved in nuclear waste management

    Offline Bengali writer verification by PDF-CNN and siamese net

    Get PDF
    © 2018 IEEE. Automated handwriting analysis is a popular area of research owing to the variation of writing patterns. In this research area, writer verification is one of the most challenging branches, having direct impact on biometrics and forensics. In this paper, we deal with offline writer verification on complex handwriting patterns. Therefore, we choose a relatively complex script, i.e., Indic Abugida script Bengali (or, Bangla) containing more than 250 compound characters. From a handwritten sample, the probability distribution functions (PDFs) of some handcrafted features are obtained and input to a convolutional neural network (CNN). For such a CNN architecture, we coin the term 'PDFCNN', where handcrafted feature PDFs are hybridized with auto-derived CNN features. Such hybrid features are then fed into a Siamese neural network for writer verification. The experiments are performed on a Bengali offline handwritten dataset of 100 writers. Our system achieves encouraging results, which sometimes exceed the results of state-of-The-Art techniques on writer verification
    corecore