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Özcan Serta∗ and Muzaffer Adakb†

aDepartment of Mathematics, Faculty of Arts and Sciences, Pamukkale University

20017 Denizli, Turkey

bDepartment of Physics, Faculty of Arts and Sciences, Pamukkale University

20017 Denizli, Turkey

August 1, 2019

Abstract

We investigate anisotropic cosmological solutions of the theory with non-minimal couplings

between electromagnetic fields and gravity in Y (R)F 2 form. After we derive the field equa-

tions by the variational principle, we look for spatially flat cosmological solutions with mag-

netic fields or electric fields. Then we give exact anisotropic solutions by assuming the

hyperbolic expansion functions. We observe that the solutions approach to the isotropic

case in late-times.
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1 Introduction

The recent observations on the accelerated expansion of the universe [1, 2, 3, 4, 5, 6, 7, 8,

9, 10, 11] lead to re-questioning of Einstein’s General Relativity and searching of new theories

of gravitation. Firstly, it was considered that the acceleration may be caused by a constant

energy arising from empty space and then Einstein’s field equations were modified by adding a

cosmological constant [12]. This modification also solved another problem of General Relativity

which called dark matter [13, 14] by the model ΛCDM. But the observed value of the cosmological

constant in this model is not consistent with the large value of the zero-point energy which

calculated by quantum field theory. In addition, there are some observational discordance to

overcome [15, 16, 17, 18, 19, 20, 21, 22] in ΛCDM model. Moreover it revealed some conceptual

problems, such as what is the cosmological constant fundamentally?

To overcome these challenges and answer this question theoretically, the following two sce-

narios were mostly considered. The first is that it may be caused by a particular phase of a dark

energy field (quintessence) which is a varying unknown energy source or a scalar field fills the

universe [23, 24, 25]. Secondly the cosmological constant effects can be obtained by modifying

gravity and then gravity behaves very differently than Einstein’s theory of gravitation on the

extremely large scales. Among the modified theories, mostly f(R) theory was investigated in

literature (for reviews see [26, 27, 28]).

On the other hand, gravitating systems such as galaxies, galaxy clusters, stars and planets

have also intrinsic magnetic fields [29, 30, 31, 32, 33, 34]. In order to take into account the

effects of electromagnetic fields to gravity, we have to consider the Einstein-Maxwell theory

for obtaining an exact description. Since the Einstein’s theory is modified to explain the dark

matter and dark energy, then the Einstein-Maxwell theory can also be modified in the non-

minimal form, especially, in the presence of the extreme situations with very strong fields such

as the beginning of the universe.

Such a non-minimal modification with RF 2-type was firstly considered by Prasanna [35] to

understand the complex nature between curvature and electromagnetic fields. Then the charge

conservation was generalized to the such terms [36]. The non-minimal couplings also can appear

from dimensional reduction of Gauss-Bonnet gravity [37] and R2 gravity [38, 39]. It is remarkable

that the non-minimal modifications with RF 2 form can arise from the calculation of QED one-

loop vacuum polarization on a curved background [40]. Furthermore, the non-minimal RF 2

couplings may generate the primordial magnetic fields by quantum fluctuations at the inflation

[41, 42], and the more general RnF 2 couplings can increase the amplitude to sufficiently large

seed fields which lead to the present galactic magnetic fields [43, 44, 45]. In other words, the

couplings can lead to quantum fluctuations of electromagnetic fields at the inflationary stage by

breaking the conformal invariance [41, 42, 43, 44, 45, 46]. Because of the inflation, the scale of
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the fluctuations can be stretched towards outside the Hubble horizon. Thus, they can be the

reason of the large scale magnetic fields observed in galaxies.

Since the electromagnetic fields lead to anisotropic energy-momentum tensor and pressure

without the averaged field assumption, the inflation may be explained by using the anisotropic

Bianchi-I space-times in the non-minimal Y (R)F 2 theory [47]. The more general modifications

have the spherically symmetric static solutions to explain the dark matter effects [48, 49, 50, 51],

the regular black hole solutions to avoid the central singularity [52] and the pp-wave solutions

[53]. It is interesting to note that the stability of the anisotropic Bianchi-I solutions were inves-

tigated for the extended I(φ,R,X)F 2 theory recently in [54]. Furthermore, dark energy models

with the non-minimally massive vector field couplings to gravity have also been investigated in

[55].

Therefore the non-minimal cosmological models need to more investigation, in particular, to

explain the late-time acceleration together with the origin of cosmic magnetic fields and its role in

the evolution of the universe. Therefore, in this paper, we look for new anisotropic cosmological

solutions with the hyperbolic expansion functions to the Y (R)F 2 gravity and determine the

corresponding models.

2 The theory of Y (R)F 2 gravity

We obtain the field equations by varying an action I =
∫
M L where L denotes a Lagrange 4-

form, and M a four-dimensional differentiable and orientable manifold endowed with a metric

g = ηabe
a⊗eb, ηab = diag(−+++). We set the orientation by the Hodge star ∗1 = e0∧e1∧e2∧e3.

Here ea figures the orthonormal basis 1-form. The Cartan-Maurer structure equations

T a = dea + ωab ∧ eb , (1)

Rab = dωab + ωac ∧ ωcb (2)

define the torsion 2-form, and the curvature 2-form, respectively, where ωab = −ωba is the

metric compatible connection 1-form. Since we will force to vanish the torsion, ωab will be the

Levi-Civita connection 1-form.

We consider the following Lagrangian for the non-minimal Y (R)F 2 gravity

L =
1

2κ2
R ∗ 1− Y (R)F ∧ ∗F + λa ∧ T a . (3)

Here the form of the non-minimal function Y (R) will be determined by solutions and κ is a

gravitational constant, R is the Ricci curvature scalar, F = dA is the electromagnetic field 2-

form, λa is the Lagrange multiplier 2-form constraining torsion to zero (T a = 0). We adhere the

following shorthand notations throughout the paper: ea ∧ eb ∧ · · · = eab···, ιaF = Fa, ιbaF =
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Fab, ιaR
a
b = Rb, ιbaR

ab = R where ι denotes the interior product such that ιbe
a = δab and

ιaιb... = ιab.... The independent variations of the Lagrangian with respect to ea, ωab and F yield

(up to a closed form)

δL =
1

2κ2
δea ∧Rbc ∧ ∗eabc + δea ∧ Y (R)(ιaF ∧ ∗F − F ∧ ιa ∗ F ) + δea ∧Dλa

+δea ∧ 2YR(ιaR
b)ιb(F ∧ ∗F ) +

1

2
δωab ∧ (eb ∧ λa − ea ∧ λb)

+δωab ∧ Σab − δF ∧ 2Y (R) ∗ F + δλa ∧ T a (4)

where YR = dY
dR and Σab is the angular momentum 3-form

Σab = D[ιab(YRF ∧ ∗F )]. (5)

We can solve λa from δωab-equation

λa = 2ιbΣ
ab +

1

2
(ιbcΣ

bc) ∧ ea. (6)

After the substitution of λa into δea-equation and some simplifications we arrive at the modified

Einstein’s equation

1

2κ2
Rbc ∧ ∗eabc + Y (ιaF ∧ ∗F − F ∧ ιa ∗ F ) + 2YR(ιaR

b)ιb(F ∧ ∗F )

+D[ιbd(YRFmnF
mn)] ∧ ∗eab = 0, (7)

while the modified Maxwell equations read

dF = 0 , d(Y ∗ F ) = 0 . (8)

where d(YRFmnF
mn) = D(YRFmnF

mn) and it can be shown that 2YR(ιaR
b)ιb(F ∧ ∗F ) =

YRFmnF
mn ∗ Ra. In order to avoid the difficulties and instabilities of the last term in the

gravitational field equation (7), we continue with the condition

YRFmnF
mn = − 1

κ2
(9)

where the constant − 1
κ2

is determined by the trace of the gravitational field equation (see [47]

for a detailed discussion). It is worthwhile to note that the condition (9) is not a new equation.

Actually it corresponds to the conservation of energy-momentum tensor. If we take the exterior

covariant derivative of the field equation (10) we obtain the condition again [56]. Furthermore,

the condition (9) causes the Ricci scalar R to be dynamic and it relates the electromagnetic field

with the derivative of the non-minimal function Y (R). Here κ is the gravitational coupling con-

stant and it determines the strength of the coupling between electromagnetic and gravitational

fields. Then the gravitational field equation can be written as

−1

2
Rbc ∧ ∗eabc = κ2τa , (10)
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where the effective energy momentum tensor τa = Tab ∗ eb is

τa = Y (ιaF ∧ ∗F − F ∧ ιa ∗ F )− 1

κ2
∗Ra . (11)

Thus the effective energy density and pressures are given by ρ = T00, px = T11, py = T22,

pz = T33 .

3 Cosmological solutions

We look for cosmological solutions in the presence of electromagnetic fields to the modified

fields equations (7) and (8) to describe the evolution of the universe. Since there is a preferential

direction along the electromagnetic field, the energy-momentum tensor and the space-time metric

become anisotropic unless assuming the averaged electromagnetic fields [57]. Then we consider

the anisotropic, locally rotationally symmetric Bianchi-I metric

g = −dt2 + a(t)2dx2 + b(t)2(dy2 + dz2) (12)

where a(t) is the expansion function in the x direction and b(t) is the planar expansion function

in the y and z directions. In order to obtain compatible solutions with the above geometry (12)

with rotational symmetry around the x-axis, we choose the electromagnetic field along the x

direction.

F = E(t)e01 +B(t)e23 (13)

with the electric component E(t) and magnetic component B(t). Here e0 = dt, e1 = a(t)dx,

e2 = b(t)dy, and e3 = b(t)dz are the orthonormal basis 1-forms. Then we can set B(t) = 0

or E(t) = 0 to obtain solutions for the sub cases with only electric fields or magnetic fields.

While the non-zero magnetic field is effective at later times, the non-zero electric field is more

important at the beginning of the universe, in the charged plasma.

Then the modified Maxwell field equations (8) give

B =
B0

b2
, E =

E0

Y b2
(14)

where B0 and E0 are integration constants. On the other hand, the modified Einstein field

equation (10) yields

2ȧḃ

ab
+
ḃ2

b2
= κ2Y (E2 +B2) + 2

b̈

b
+
ä

a
= κ2ρ , (15)

2b̈

b
+
ḃ2

b2
= κ2Y (E2 +B2) + 2

ȧḃ

ab
+
ä

a
= −κ2px , (16)

ä

a
+
b̈

b
+
ȧḃ

ab
= −κ2Y (E2 +B2) +

b̈

b
+
ȧḃ

ab
+
ḃ2

b2
= −κ2py (17)
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where dot means the derivative with respect to cosmic time t and we have used the condition

(9) as

YR(E2 −B2) =
1

2κ2
. (18)

By subtracting (15) from (16), we arrive

ȧḃ− ab̈ = 0 . (19)

Equation (19) gives the relation between the directional scale functions as

a = a0ḃ (20)

where a0 arbitrary constant. By summing equations (15) and (16), and using (19) we obtain

(17) or its the following equivalent form

ä

a
− ḃ2

b2
+
κ2

b4

(
E2

0

Y
+ Y B2

0

)
= 0 . (21)

We noticed that the derivative of equation (21) gives the condition (18). In order to solve the

differential equation (21) we can choose the non-minimal function Y (R) which gives the expan-

sion function b(t), or alternatively we can choose the expansion function b(t) which determines

the non-minimal function Y (R) in the Lagrangian, then a(t) is determined by (20). In this

study, we consider the second approach by taking the hyperbolic expansion.

b(t) = sinhk(αt) (22)

where α and k are positive real numbers. Most of the recent observations indicate the presence of

the phase transition from deceleration to acceleration [4, 7]. The hyperbolic scale function (22)

leads to a deceleration parameter which can change sign from positive to negative. Furthermore,

it behaves b(t) ∝ tk in the beginning of the universe and b(t) ∝ eαkt in late times. Here the

constant α is in unit Gyr−1 and αk can be interpreted as the Hubble parameter in late times.

The scale function in the x direction is obtained via (20) as

a(t) = a0αk sinhk−1(αt) cosh(αt) . (23)

When we look at the limit lim
t→∞

a(t)
b(t) = a0αk, we see that we should set a0 = 1

αk , in order to

obtain isotropic case in late times. Thus a(t) becomes

a(t) = sinhk−1(αt) cosh(αt) . (24)

By using equation (21) we obtain the non-minimal function and the magnetic field as a solution

of the model for E = 0

Y (t) =
(3k − 2)α2 sinh4k−2(αt)

κ2B2
0

, (25)

B(t) =
B0

sinh2k(αt)
. (26)
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The expansion functions (22) and(24) also give the following solution with the non-zero electric

field and B = 0 which is another model

Y (t) =
κ2E2

0

α2(3k − 2) sinh4k−2(αt)
, (27)

E(t) =
(3k − 2)α2 sinh2k−2(αt)

E0κ2
. (28)

It is worthy to notice that the field equations (7) and (8) or the differential equations (14)-

(21) have the duality transformation given by (F, ∗F )→ (∗Y F,−Y F ) or B → −Y E, B0 → −E0

and Y → 1
Y [51]. Thus each model with magnetic field has a corresponding model with electric

field and it can be found by taking the duality transformation.

(a) k = 1 (b) k = 2

Figure 1: The mean Hubble parameter H(t) versus cosmic time t for various α values and k = 1,

k = 2, respectively.

Then we calculate the Ricci scalar for the expansion functions (22) and (24)

R(t) =
2α2(6k2 − 7k + 2)

sinh2(αt)
+ 12α2k2 . (29)

We see that the Ricci scalar is infinity at t = 0 and it approaches the constant value R = 12α2k2,

as t → ∞. When we take the inverse function of the Ricci scalar and substitute it in (25) and

(27), we obtain the non-minimal function Y in terms of R. Then we can write our model

L =
1

2κ2
R ∗ 1− (3k − 2)α2

κ2B2
0

(
2α2(6k2 − 7k + 2)

R− 12α2k2

)2k−1

F ∧ ∗F + λa ∧ T a, (30)

which admits the expansion functions (22), (24) and the magnetic field (26) as a solution to the

field equations. Also, after the duality transformation [51] we obtain the corresponding model

L =
1

2κ2
R ∗ 1− κ2E2

0

(3k − 2)α2

(
R− 12α2k2

2α2(6k2 − 7k + 2)

)2k−1

F ∧ ∗F + λa ∧ T a, (31)
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(a) α = 0.08 (b) α = 0.2

Figure 2: The deceleration parameter q versus cosmic time t for two α values and the corresponding

various k values.

admitting the same expansion functions (22), (24) and the electric field (28) as a solution. We

note that the both models lead to the same scale factors and the cosmological parameters. Then

we calculate the following parameters; the mean scale factor

v = (ab2)
1
3 = (cosh(αt) sinh3k−1(αt))

1
3 , (32)

the mean Hubble parameter

H =
v̇

v
=

2α(3k cosh2(αt)− 1)

3 sinh(2αt)
, (33)

and the mean deceleration parameter

q = −1 +
d

dt
(

1

H
) =

3(3k cosh2(αt)− 2 cosh2(αt) + 1)

(3k cosh2(αt)− 1)2
− 1 . (34)

We demonstrate the behaviors of the mean Hubble parameter in Figure 1 and the mean de-

celeration parameter q in Figure 2 and Figure 3 for various parameter values. As we see from

Figure 1, the mean Hubble parameter (33) goes to infinity as t → 0. Furthermore, it is a de-

creasing function of cosmic time and it approaches the constant value H = kα in late times.

Additionally, Figure 2 shows that as α values increase, q approaches −1 faster. We see from

(34) and the figures that the deceleration parameter q is a monotonically decreasing function of

cosmic time. It starts from q(0) = 4−3k
3k−1 , at t = 0, and decreases to q = −1 as t → ∞. Then

the phase transition from deceleration to acceleration occurs only when the initial deceleration

parameter positive, q(0) = 4−3k
3k−1 > 0. Therefore k must be in the interval 1

3 < k < 4
3 for the
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(a) k = 1 (b) k = 2

Figure 3: The deceleration parameter q(t) for two k values and the corresponding various α values.

phase transition. In other cases the universe expands always in the accelerated phase without

phase transition.

The directional components of the parameters are obtained as

Hx =
ȧ

a
=

2α(k cosh2(αt)− 1)

sinh(2αt)
, Hy,z =

ḃ

b
= kα coth(αt) , (35)

qx = −1 +
d

dt

(
1

Hx

)
=

(k − 2) cosh2(αt) + 1

(k cosh2(αt)− 1)2
− 1 , qy,z = −1 +

d

dt

(
1

Hy

)
=

1− k cosh2(αt)

k cosh2(αt)
.(36)

The anisotropy parameter ∆ and the shear scalar σ2 are obtained by

∆ =
1

3

∑
i=x,y,z

(
Hi −H
H

)2

=
2

(3k cosh2(αt)− 1)2
, (37)

σ2 =
1

2

∑
i=x,y,z

(Hi −H)2 =
4α2

3 sinh2(2αt)
. (38)

Then we calculate the effective energy density and pressures

ρ =
kα2(3k cosh2(αt)− 2)

κ2 sinh2(αt)
, px = −ρ , py = pz =

α2(5k − 2− 3k2 cosh2(αt))

κ2 sinh2(αt)
(39)

which lead to the equation of state

wx =
px
ρ

= −1 , wy = wz =
py
ρ

= −3k2 cosh2(αt)− 5k + 2

k(3k cosh2(αt)− 2)
. (40)

We note that the positive effective energy density condition of the model requires that k > 2
3

from (39). We see that the model has the Big Bang singularity at the beginning of the universe
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(a) k = 1 (b) k = 2

Figure 4: The anisotropy parameter ∆(t) for various α values and k = 1, k = 2, respectively.

for k > 1, since lim
t→0

Hx,y,z = ∞, lim
t→0

ρ = ∞ and lim
t→0

a, b = 0. Furthermore, we also see

lim
t→∞

∆ = 0 from (37) and lim
t→∞

a(t)
b(t) = 1 from (22) and (24) which means that the universe

approaches isotropy and homogeneity at late-times for all positive k values, see Figure 4.

3.1 The Model with k = 1

In order to demonstrate features of the models, we focus on the simple case with k = 1 in which

the expansion function (22) takes the form

b(t) = sinh(αt) (41)

then, the equation (24) leads to

a(t) = cosh(αt) . (42)

By using equation (21) we obtain the non-minimal function and the magnetic field as a solution

with E = 0

Y (t) =
α2 sinh2(αt)

κ2B2
0

, (43)

B(t) =
B0

sinh2(αt)
. (44)

After the duality transformation given by (F, ∗F ) → (∗Y F,−Y F ) or B → −Y E, B0 → −E0

and Y → 1
Y [51], we can obtain the corresponding solution with non-zero electric field and B = 0
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as

Y (t) =
κ2E2

0

α2 sinh2(αt)
, (45)

E(t) = − α2

E0κ2
. (46)

for the same expansion functions (41), (42). By using the expansion functions, we calculate the

Ricci scalar as

R(t) =
2α2

sinh2(αt)
+ 12α2 . (47)

When we take the inverse function of the Ricci scalar and substitute it in (43) and (45), we

obtain the non-minimal function Y in terms of R. Then our model for the non-zero magnetic

field becomes

L =
1

2κ2
R ∗ 1− 2α4

κ2B2
0(R− 12α2)

F ∧ ∗F + λa ∧ T a, (48)

which gives the solution (41), (42) and (44). After the duality transformation the corresponding

model for the non-zero electric field

L =
1

2κ2
R ∗ 1− κ2E2

0(R− 12α2)

2α4
F ∧ ∗F + λa ∧ T a, (49)

gives the solution (41), (42) and (46). Both models lead to the same scale factors and the

cosmological parameters. Then we calculate the following mean scale factor

v = (ab2)
1
3 = (cosh(αt) sinh2(αt))

1
3 , (50)

the mean Hubble parameter

H =
v̇

v
=

2α(3 cosh2(αt)− 1)

3 sinh(2αt)
, (51)

and the mean deceleration parameter

q = −1 +
d

dt
(

1

H
) =

3(cosh2(αt) + 1)

(3 cosh2(αt)− 1)2
− 1 . (52)

We see form (52) and Figure 3a that the phase transition from deceleration to acceleration

occurs in the case with k = 1, because of q(0) = 1
2 > 0 and lim

t→∞
q(t) −→ −1. It is clearly seen

from the figures that the mean deceleration parameter changes sign after a certain time from the

beginning which depends on the parameter α and it approaches the value −1, monotonically.

In order to obtain the mean deceleration parameter in terms of the redshift z = −1 + v0
v , we

isolate cosh(αt) from (50) as

cosh(αt) =
X

6
+

2

X
(53)
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where X = ( 108v3 + 12
√

81v6 − 12 )1/3, v = v0
1+z and v0 present value of the scale factor.

After substituting (53) in (52), we obtain

q(z) =
X2

12 + 12
X2 + 5

(X
2

12 + 12
X2 + 1)2

− 1 . (54)

The directional components of the parameters are obtained as

Hx =
ȧ

a
= α tanh(αt) , Hy,z =

ḃ

b
= α coth(αt) , (55)

qx = −1 +
d

dt
(

1

Hx
) = − coth2(αt) , qy,z = −1 +

d

dt
(

1

Hy
) = − tanh2(αt) . (56)

The anisotropy parameter ∆ and the shear scalar σ2 are obtained by

∆ =
2

(3 cosh2(αt)− 1)2
, σ2 =

4α2

3 sinh2(2αt)
. (57)

Then we calculate the effective energy density and pressures

ρ =
α2(3 cosh2(αt)− 2)

κ2 sinh2(αt)
, px = −ρ , py = pz = −3α2 (58)

which leads to the equation of state

wx =
px
ρ

= −1 , wy = wz =
py
ρ

= − 3 sinh2(αt)

3 cosh2(αt)− 2
. (59)

(a) wx and wy = wz (b) q

Figure 5: The directional equation of state parameters wx, wy,z and deceleration parameter q

versus cosmic time t for α = 0.08 .

We see from equation (57) and Figure 4 that the anisotropy parameter ∆ goes to zero, as t

approaches to infinity, lim
t→∞

∆ = 0 and lim
t→∞

a(t)
b(t) = 1 from (22) and (24). It means that the

universe becomes isotropic in late-times. We also see that the model has a singularity at t = 0.
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4 Conclusions

We have investigated anisotropic cosmological solutions of the non-minimally coupled gravity

in Y (R)F 2 form. After casting our model by a Lagrangian 4-form we have obtained the varia-

tional field equations. Then we found solutions with only electric or magnetic fields under the

assumption of a spatially flat anisotropic space-time. We note that the anisotropy parameter

approaches to zero at late-times and lim
t→∞

a(t)
b(t) = 1. Therefore the universe becomes homoge-

neous and isotropic at late-times. We also found that the model has a singularity at t = 0, since

H →∞, ρ→∞, b→ 0 and v → 0, as t→ 0, for all α when k > 2
3 .

Furthermore, as seen from the figures and equation (34), the deceleration parameter q starts

from q(0) = 4−3k
3k−1 and decreases to q = −1 as t → ∞, monotonically. Additionally, as the

parameter α increases it approaches −1 more faster. Then the phase transition from deceleration

to acceleration occurs only for 1
3 < k < 4

3 . In other cases the universe expands continuously

in the accelerated phase without phase transition, this can be seen easily in Figure 3b for

some parameter values. The late-time acceleration can be realized by the constant curvature

R = 12α2k2 and the constant Hubble parameter H = αk, as t→∞ .

The recent observations indicate that the current value of the deceleration parameter is

negative and it can take values in the interval 0 < q < −1 [15, 22]. Additionally, the possible

deviations from isotropy is predicted by the upper bound ∆ . 10−4 [58] for type Ia supernovae

through a model independent way.

By taking t = 13.8 Gyr in the anisotropy parameter (57), we find α & 0.18 for k = 1.

Most of the recent models predict a phase transition from the early decelerated phase to the

late time accelerated phase. In this case with k = 1, the phase transition is realized at t . 2.3

Gyr, see Figure 5b. Since after ∼ 20 Gyr the anisotropy parameter becomes very small, it

can be accepted that the universe almost reaches the isotropic phases about at that time. The

deceleration parameter also reaches the value −1, which corresponds to de Sitter phase at the

same time. For the case with k > 1, by using the same upper limit for the anisotropy parameter

and (37), we can obtain smaller lower bound for α from α ' 0.18. In all of these cases the

deceleration parameter takes values in the interval −1 < q < 0 for late times. Thus, we have

given some limits on the free parameters in order that our model would exhibit a behavior

consistent with the current understanding of the universe.
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