5,693 research outputs found

    Post-surgical Pancreatitis Masquerading as Recurrent Neuroendocrine Cancer

    Get PDF
    Neuroendocrine tumours of the pancreas can have a spectrum of behaviour from relatively benign to aggressive. Resection can result in cure although metastatic disease is described. We present an unusual case of an apparent local recurrence of previously resected neuroendocrine tumour in a young man who had undergone distal pancreatectomy. Pathological analysis demonstrated focal post-surgical pancreatitis with radiological appearances bearing striking similarity to the original primary tumour

    Ecological and taxonomic variation among human RNA viruses

    Get PDF
    AbstractOnly a minority of RNA viruses that can infect humans are capable of spreading in human populations independently of a zoonotic reservoir. This is especially true of vector-borne RNA viruses; the majority of these are not transmissible (via the vector) between humans at all. Understanding the biology underlying this observation will help us evaluate the public health risk associated with novel vector-borne RNA viruses

    Northern Ireland Commercial Property Market in 2012

    Get PDF

    Preclinical correction of human Fanconi anemia complementation group A bone marrow cells using a safety-modified lentiviral vector.

    Get PDF
    One of the major hurdles for the development of gene therapy for Fanconi anemia (FA) is the increased sensitivity of FA stem cells to free radical-induced DNA damage during ex vivo culture and manipulation. To minimize this damage, we have developed a brief transduction procedure for lentivirus vector-mediated transduction of hematopoietic progenitor cells from patients with Fanconi anemia complementation group A (FANCA). The lentiviral vector FancA-sW contains the phosphoglycerate kinase promoter, the FANCA cDNA, and a synthetic, safety-modified woodchuck post transcriptional regulatory element (sW). Bone marrow mononuclear cells or purified CD34(+) cells from patients with FANCA were transduced in an overnight culture on recombinant fibronectin peptide CH-296, in low (5%) oxygen, with the reducing agent, N-acetyl-L-cysteine (NAC), and a combination of growth factors, granulocyte colony-stimulating factor (G-CSF), Flt3 ligand, stem cell factor, and thrombopoietin. Transduced cells plated in methylcellulose in hypoxia with NAC showed increased colony formation compared with 21% oxygen without NAC (P<0.03), showed increased resistance to mitomycin C compared with green fluorescent protein (GFP) vector-transduced controls (P<0.007), and increased survival. Thus, combining short transduction and reducing oxidative stress may enhance the viability and engraftment of gene-corrected cells in patients with FANCA

    Antimicrobial activity of an iron triple helicate

    Get PDF
    The prevalence of antibiotic resistance has resulted in the need for new approaches to be developed to combat previously easily treatable infections. Here we investigated the potential of the synthetic metallomolecules [Fe2L3]4+ and [Cu2(L’)2]2+ as antibacterial agents. Both molecules have been shown to bind DNA; [Fe2L3]4+ binds in the major groove and causes DNA coiling, whilst [Cu2(L’)2]2+ can act as an artificial nuclease. The work described here shows that only [Fe2L3]4+ is bactericidal for Bacillus subtilis and Escherichia coli. We demonstrate that [Fe2L3]4+ binds bacterial DNA in vivo and, strikingly, that it kills B. subtilis cells very rapidly

    Paradoxical popups: Why are they hard to catch?

    Full text link
    Even professional baseball players occasionally find it difficult to gracefully approach seemingly routine pop-ups. This paper describes a set of towering pop-ups with trajectories that exhibit cusps and loops near the apex. For a normal fly ball, the horizontal velocity is continuously decreasing due to drag caused by air resistance. But for pop-ups, the Magnus force (the force due to the ball spinning in a moving airflow) is larger than the drag force. In these cases the horizontal velocity decreases in the beginning, like a normal fly ball, but after the apex, the Magnus force accelerates the horizontal motion. We refer to this class of pop-ups as paradoxical because they appear to misinform the typically robust optical control strategies used by fielders and lead to systematic vacillation in running paths, especially when a trajectory terminates near the fielder. In short, some of the dancing around when infielders pursue pop-ups can be well explained as a combination of bizarre trajectories and misguidance by the normally reliable optical control strategy, rather than apparent fielder error. Former major league infielders confirm that our model agrees with their experiences.Comment: 28 pages, 10 figures, sumitted to American Journal of Physic

    Multiscale modelling of nanoparticle distribution in a realistic tumour geometry following local injection

    Get PDF
    Radiosensitizers have proven to be an effective method of improving radiotherapy outcomes, with the distribution of particles being a crucial element to delivering optimal treatment outcomes due to the short range of effect of these particles. Here we present a computational model for the transport of nanoparticles within the tumour, whereby the fluid velocity and particle deposition are obtained and used as input into the convection-diffusion equation to calculate the spatio-temporal concentration of the nanoparticles. The effect of particle surface charge and injection locations on the distribution of nanoparticle concentration within the interstitial fluid and deposited onto cell surfaces is assessed. The computational results demonstrate that negatively charged particles can achieve a more uniform distribution throughout the tumour as compared to uncharged or positively charged particles, with particle volume within the fluid being 100% of tumour volume and deposited particle volume 44.5%. In addition, varying the injection location from the end to the middle of the tumour caused a reduction in particle volume of almost 20% for negatively charged particles. In conclusion, radiosensitizing particles should be negatively charged to maximise their spread and penetration within the tumour. Choosing an appropriate injection location can further improve the distribution of these particles
    • 

    corecore