323 research outputs found

    The Underlying Mechanisms for Olanzapine-induced Hypertriglyceridemia

    Get PDF
    Olanzapine is an efficacious antipsychotic drug often used in the treatment for schizophrenia or bipolar disorder, however, sometimes induces metabolic disorders. We will introduce a patient with bipolar disorder, who has been treated by olanzapine and showed severe hypertriglyceridemia. As a result of measurements of parameters associated with lipid metabolism, very-low density lipoprotein was most important lipoprotein for olanzapin-induced hypertriglyceridemia. The cessation of olanzapine significantly decreased high-sensitivity C-reactive protein and increased adiponectin, proposing that inflammation and reduced adiponectin level may be associated with olanzapin-induced hypertriglyceridemia

    Masking and Mixing Adversarial Training

    Full text link
    While convolutional neural networks (CNNs) have achieved excellent performances in various computer vision tasks, they often misclassify with malicious samples, a.k.a. adversarial examples. Adversarial training is a popular and straightforward technique to defend against the threat of adversarial examples. Unfortunately, CNNs must sacrifice the accuracy of standard samples to improve robustness against adversarial examples when adversarial training is used. In this work, we propose Masking and Mixing Adversarial Training (M2AT) to mitigate the trade-off between accuracy and robustness. We focus on creating diverse adversarial examples during training. Specifically, our approach consists of two processes: 1) masking a perturbation with a binary mask and 2) mixing two partially perturbed images. Experimental results on CIFAR-10 dataset demonstrate that our method achieves better robustness against several adversarial attacks than previous methods

    Plastic deformation of polycrystals of Co

    Get PDF
    The plastic behaviour of Co3(Al, W) polycrystals with the L12 structure has been investigated in compression from 77 to 1273 K. The yield stress exhibits a rapid decrease at low temperatures (up to room temperature) followed by a plateau (up to 950 K), then it increases anomalously with temperature in a narrow temperature range between 950 and 1100 K, followed again by a rapid decrease at high temperatures. Slip is observed to occur exclusively on {111} planes at all temperatures investigated. The rapid decrease in yield stress observed at low temperatures is ascribed to a thermal component of solid-solution hardening that occurs during the motion of APB-coupled dislocations whose core adopts a planar, glissile structure. The anomalous increase in yield stress is consistent with the thermally activated cross-slip of APB-coupled dislocations from (111) to (010), as for many other L12 compounds. Similarities and differences in the deformation behaviour and operating mechanisms among Co3(Al, W) and other L12 compounds, such as Ni3Al and Co3Ti, are discussed

    Prediction of age and brachial-ankle pulse-wave velocity using ultra-wide-field pseudo-color images by deep learning

    Get PDF
    This study examined whether age and brachial-ankle pulse-wave velocity (baPWV) can be predicted with ultra-wide-field pseudo-color (UWPC) images using deep learning (DL). We examined 170 UWPC images of both eyes of 85 participants (40 men and 45 women, mean age: 57.5 ± 20.9 years). Three types of images were included (total, central, and peripheral) and analyzed by k-fold cross-validation (k = 5) using Visual Geometry Group-16. After bias was eliminated using the generalized linear mixed model, the standard regression coefficients (SRCs) between actual age and baPWV and predicted age and baPWV from the UWPC images by the neural network were calculated, and the prediction accuracies of the DL model for age and baPWV were examined. The SRC between actual age and predicted age by the neural network was 0.833 for all images, 0.818 for central images, and 0.649 for peripheral images (all P < 0.001) and between the actual baPWV and the predicted baPWV was 0.390 for total images, 0.419 for central images, and 0.312 for peripheral images (all P < 0.001). These results show the potential prediction capability of DL for age and vascular aging and could be useful for disease prevention and early treatment

    Proteasome-dependent decrease in Akt by growth factors in vascular smooth muscle cells

    Get PDF
    AbstractAkt is activated by growth factors to regulate various aspects of vascular smooth muscle cell function. Platelet-derived growth factor (PDGF) and insulin-like growth factor-1 activated Akt in vascular smooth muscle cells with a rapid reduction of total Akt protein that lasted for several hours. The downregulation of Akt required phosphatidylinositol 3-kinase activity, but not intrinsic Akt activity. The downregulation of Akt was abrogated by MG-132, a proteasome inhibitor, but not by inhibitors of calpain or cathepsins. Akt was found in ubiquitin immune complex after PDGF treatment. Proteasome-dependent degradation of Akt may provide a counter-regulatory mechanism against overactivation of Akt

    Mesoscopic nature of serration behavior in high-Mn austenitic steel

    Get PDF
    セレーション挙動の解明 --高強度・高延性を示す高Mn鋼の変形の本質に迫る--. 京都大学プレスリリース. 2020-12-25.We have thoroughly clarified the mesoscopic nature of serration behavior in a high-Mn austenitic steel in connection with its characteristic localized deformation. A typical high-Mn steel, Fe-22Mn-0.6C (wt. %), with a face centered cubic (FCC) single-phase structure was used in the present study. After 4 cycles of repeated cold-rolling and annealing process, a specimen with a fully recrystallized microstructure having a mean grain size of 2.0 μm was obtained. The specimen was tensile tested at room temperature at an initial strain rate of 8.3 × 10−4 s−1, during which the digital image correlation (DIC) technique was applied for analyzing local strain and strain-rate distributions in the specimen. Obtained results indicated that a unique strain localization behavior characterized by the formation, propagation and annihilation of deformation localized bands, so-called Portevin–Le Chatelier (PLC) bands, determined the global mechanical response appearing as serration on the stress-strain curve. In addition, the in-situ synchrotron XRD diffraction during the tensile test was utilized to understand what was happening in the material with respect to the PLC banding. Lattice strain of (200) plane nearly perpendicular to the tensile direction dropped when every PLC band passed through the beam position, which indicated a stress relaxation occurred inside the PLC band. At the same time, the dislocation density increased drastically when the PLC band passed the beam position, which described that the material was plastically deformed and work-hardened mostly within the PLC band. All the results obtained consistently explained the serration behavior in a mesoscopic scale. The serration behavior on the stress-strain curve totally corresponded to the formation, propagation and annihilation of the PLC band in the 22Mn-0.6C steel, and the localized deformation, i.e., the PLC banding, governed the characteristic strain hardening of the material

    Destruction of mesoscopic chemically modulated domains in single phase high entropy alloy via plastic deformation

    Get PDF
    Chemically modulated mesoscopic domains in a fcc single phase CrMnFeCoNi equi-atomic high entropy alloy (HEA) are detected by small angle diffraction performed at a synchrotron radiation facility, whereas the mesoscopic domains cannot be detected by conventional X-ray diffraction and 2D mappings of energy dispersive X-ray spectroscopy by scanning electron microscopy and scanning transmission electron microscopy. The mesoscopic domains are deformed and shrieked, and finally destructed by plastic deformation, which is supported by the comprehensive observations/measurements, such as electrical resistivity, Vickers hardness, electron backscattering diffraction, and hard X-ray photoemission spectroscopy. The destruction of the mesoscopic domains causes the decrease in electrical resistivity via plastic deformation, so called K-effect, which is completely opposite to the normal trend of metals. We confirmed that the presence and the size of local chemical ordering or short-range order domains in the single phased HEA, and furthermore, Cr and Mn are related to form the domains
    corecore