48 research outputs found

    Overview of JET results for optimising ITER operation

    Get PDF
    The JET 2019-2020 scientific and technological programme exploited the results of years of concerted scientific and engineering work, including the ITER-like wall (ILW: Be wall and W divertor) installed in 2010, improved diagnostic capabilities now fully available, a major neutral beam injection upgrade providing record power in 2019-2020, and tested the technical and procedural preparation for safe operation with tritium. Research along three complementary axes yielded a wealth of new results. Firstly, the JET plasma programme delivered scenarios suitable for high fusion power and alpha particle (α) physics in the coming D-T campaign (DTE2), with record sustained neutron rates, as well as plasmas for clarifying the impact of isotope mass on plasma core, edge and plasma-wall interactions, and for ITER pre-fusion power operation. The efficacy of the newly installed shattered pellet injector for mitigating disruption forces and runaway electrons was demonstrated. Secondly, research on the consequences of long-term exposure to JET-ILW plasma was completed, with emphasis on wall damage and fuel retention, and with analyses of wall materials and dust particles that will help validate assumptions and codes for design and operation of ITER and DEMO. Thirdly, the nuclear technology programme aiming to deliver maximum technological return from operations in D, T and D-T benefited from the highest D-D neutron yield in years, securing results for validating radiation transport and activation codes, and nuclear data for ITER.EUROfusion Consortium 63305

    Overview of JET results for optimising ITER operation

    Get PDF
    The JET 2019–2020 scientific and technological programme exploited the results of years of concerted scientific and engineering work, including the ITER-like wall (ILW: Be wall and W divertor) installed in 2010, improved diagnostic capabilities now fully available, a major neutral beam injection upgrade providing record power in 2019–2020, and tested the technical and procedural preparation for safe operation with tritium. Research along three complementary axes yielded a wealth of new results. Firstly, the JET plasma programme delivered scenarios suitable for high fusion power and alpha particle (a) physics in the coming D–T campaign (DTE2), with record sustained neutron rates, as well as plasmas for clarifying the impact of isotope mass on plasma core, edge and plasma-wall interactions, and for ITER pre-fusion power operation. The efficacy of the newly installed shattered pellet injector for mitigating disruption forces and runaway electrons was demonstrated. Secondly, research on the consequences of long-term exposure to JET-ILW plasma was completed, with emphasis on wall damage and fuel retention, and with analyses of wall materials and dust particles that will help validate assumptions and codes for design and operation of ITER and DEMO. Thirdly, the nuclear technology programme aiming to deliver maximum technological return from operations in D, T and D–T benefited from the highest D–D neutron yield in years, securing results for validating radiation transport and activation codes, and nuclear data for ITER.This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 and 2019–2020 under Grant Agreement No. 633053.Peer ReviewedArticle signat per 1223 autors/autores: J. Mailloux1, N. Abid1, K. Abraham1, P. Abreu2, O. Adabonyan1, P. Adrich3, V. Afanasev4, M. Afzal1, T. Ahlgren5, L. Aho-Mantila6, N. Aiba7, M. Airila6, M. Akhtar1, R. Albanese8, M. Alderson-Martin1, D. Alegre9, S. Aleiferis10, A. Aleksa1, A.G. Alekseev11, E. Alessi12, P. Aleynikov13, J. Algualcil14, M. Ali1, M. Allinson1, B. Alper1, E. Alves2, G. Ambrosino8, R. Ambrosino8, V. Amosov15, E.Andersson Sunden16, P. Andrew13, B.M. Angelini17, C. Angioni18, I. Antoniou1, L.C. Appel1, C. Appelbee1, S. Aria1, M. Ariola8, G. Artaserse17, W. Arter1, V. Artigues18, N. Asakura7, A. Ash1, N. Ashikawa19, V. Aslanyan20, M. Astrain21, O. Asztalos22, D. Auld1, F. Auriemma23, Y. Austin1, L. Avotina24, E. Aymerich25, A. Baciero9, F. Bairaktaris26, J. Balbin27, L. Balbinot23, I. Balboa1, M. Balden18, C. Balshaw1, N. Balshaw1, V.K. Bandaru18, J. Banks1, Yu.F. Baranov1, C. Barcellona28, A. Barnard1, M. Barnard1, R. Barnsley13, A. Barth1, M. Baruzzo17, S. Barwell1, M. Bassan13, A. Batista2, P. Batistoni17, L. Baumane24, B. Bauvir13, L. Baylor29, P.S. Beaumont1, D. Beckett1, A. Begolli1, M. Beidler29, N. Bekris30,31, M. Beldishevski1, E. Belli32, F. Belli17, É. Belonohy1, M. Ben Yaala33, J. Benayas1, J. Bentley1, H. Bergsåker34, J. Bernardo2, M. Bernert18, M. Berry1, L. Bertalot13, H. Betar35, M. Beurskens36, S. Bickerton1, B. Bieg37, J. Bielecki38, A. Bierwage7, T. Biewer29, R. Bilato18, P. Bílková39, G. Birkenmeier18, H. Bishop1, J.P.S. Bizarro2, J. Blackburn1, P. Blanchard40, P. Blatchford1, V. Bobkov18, A. Boboc1, P. Bohm39, T. Bohm41, I. Bolshakova42, T. Bolzonella23, N. Bonanomi18, D. Bonfiglio23, X. Bonnin13, P. Bonofiglo43, S. Boocock1, A. Booth1, J. Booth1, D. Borba2,30, D. Borodin44, I. Borodkina39,44, C. Boulbe45, C. Bourdelle27, M. Bowden1, K. Boyd1, I.Bozicevic Mihalic46, S.C. Bradnam1, V. Braic47, L. Brandt48, R. Bravanec49, B. Breizman50, A. Brett1, S. Brezinsek44, M. Brix1, K. Bromley1, B. Brown1, D. Brunetti1,12, R. Buckingham1, M. Buckley1, R. Budny, J. Buermans51, H. Bufferand27, P. Buratti17, A. Burgess1, A. Buscarino28, A. Busse1, D. Butcher1, E.de la Cal9, G. Calabrò52, L. Calacci53, R. Calado2, Y. Camenen54, G. Canal55, B. Cannas25, M. Cappelli17, S. Carcangiu25, P. Card1, A. Cardinali17, P. Carman1, D. Carnevale53, M. Carr1, D. Carralero9, L. Carraro23, I.S. Carvalho2, P. Carvalho2, I. Casiraghi56, F.J. Casson1, C. Castaldo17, J.P. Catalan14, N. Catarino2, F. Causa12, M. Cavedon18, M. Cecconello16, C.D. Challis1, B. Chamberlain1, C.S. Chang43, A. Chankin18, B. Chapman1,57, M. Chernyshova58, A. Chiariello8, P. Chmielewski58, A. Chomiczewska58, L. Chone59, G. Ciraolo27, D. Ciric1, J. Citrin60, Ł. Ciupinski61, M. Clark1, R. Clarkson1, C. Clements1, M. Cleverly1, J.P. Coad1, P. Coates1, A. Cobalt1, V. Coccorese8, R. Coelho2, J.W. Coenen44, I.H. Coffey62, A. Colangeli17, L. Colas27, C. Collins29, J. Collins1, S. Collins1, D. Conka24, S. Conroy16, B. Conway1, N.J. Conway1, D. Coombs1, P. Cooper1, S. Cooper1, C. Corradino28, G. Corrigan1, D. Coster18, P. Cox1, T. Craciunescu63, S. Cramp1, C. Crapper1, D. Craven1, R. Craven1, M.Crialesi Esposito48, G. Croci56, D. Croft1, A. Croitoru63, K. Crombe51,64, T. Cronin1, N. Cruz2, C. Crystal32, G. Cseh22, A. Cufar65, A. Cullen1, M. Curuia66, T. Czarski58, H. Dabirikhah1, A.Dal Molin56, E. Dale1, P. Dalgliesh1, S. Dalley1, J. Dankowski38, P. David18, A. Davies1, S. Davies1, G. Davis1, K. Dawson1, S. Dawson1, I.E. Day1, M. De Bock13, G. De Temmerman13, G. De Tommasi8, K. Deakin1, J. Deane1, R. Dejarnac39, D. Del Sarto35, E. Delabie29, D. Del-Castillo-Negrete29, A. Dempsey67, R.O. Dendy1,57, P. Devynck27, A. Di Siena18, C. Di Troia17, T. Dickson1, P. Dinca63, T. Dittmar44, J. Dobrashian1, R.P. Doerner68, A.J.H. Donne´69, S. Dorling1, S. Dormido-Canto70, D. Douai27, S. Dowson1, R. Doyle67, M. Dreval71, P. Drewelow36, P. Drews44, G. Drummond1, Ph. Duckworth13, H. Dudding1,72, R. Dumont27, P. Dumortier51, D. Dunai22, T. Dunatov46, M. Dunne18, I. Duran39, F. Durodie51, R. Dux18, A. Dvornova27, R. Eastham1, J. Edwards1, Th. Eich18, A. Eichorn1, N. Eidietis32, A. Eksaeva44, H. El Haroun1, G. Ellwood13, C. Elsmore1, O. Embreus73, S. Emery1, G. Ericsson16, B. Eriksson16, F. Eriksson74, J. Eriksson16, L.G. Eriksson75, S. Ertmer44, S. Esquembri21, A.L. Esquisabel76, T. Estrada9, G. Evans1, S. Evans1, E. Fable18, D. Fagan1, M. Faitsch18, M. Falessi17, A. Fanni25, A. Farahani1, I. Farquhar1, A. Fasoli40, B. Faugeras45, S. Fazinic46, F. Felici40, R. Felton1, A. Fernandes2, H. Fernandes2, J. Ferrand1, D.R. Ferreira2, J. Ferreira2, G. Ferrò53, J. Fessey1, O. Ficker39, A.R. Field1, A. Figueiredo2, J. Figueiredo2,30, A. Fil1, N. Fil1,20, P. Finburg1, D. Fiorucci23, U. Fischer31, G. Fishpool1, L. Fittill1, M. Fitzgerald1, D. Flammini17, J. Flanagan1, K. Flinders1, S. Foley1, N. Fonnesu17, M. Fontana40, J.M. Fontdecaba9, S. Forbes1, A. Formisano8, T. Fornal58, L. Fortuna28, E. Fortuna-Zalesna61, M. Fortune1, C. Fowler1, E. Fransson74, L. Frassinetti34, M. Freisinger44, R. Fresa8, R. Fridström34, D. Frigione53, T. Fülöp73, M. Furseman1, V. Fusco24, S. Futatani17, D. Gadariya77, K. Gál69, D. Galassi40, K. Gałazka58, S. Galeani53, D. Gallart78, R. Galvao55, Y. Gao44, J. Garcia27, M. García-Muñoz79, M. Gardener1, L. Garzotti1, J. Gaspar80, R. Gatto81, P. Gaudio53, D. Gear1, T. Gebhart29, S. Gee1, M. Gelfusa53, R. George1, S.N. Gerasimov1, G. Gervasini12, M. Gethins1, Z. Ghani1, M. Gherendi63, F. Ghezzi12, J.C. Giacalone27, L. Giacomelli12, G. Giacometti54, C. Gibson1, K.J. Gibson72, L. Gil2, A. Gillgren74, D. Gin4, E. Giovannozzi17, C. Giroud1, R. Glen1, S. Glöggler18, J. Goff1, P. Gohil32, V. Goloborodko82, R. Gomes2, B. Gonçalves2, M. Goniche27, A. Goodyear1, S. Gore1, G. Gorini56, T. Görler18, N. Gotts1, R. Goulding43, E. Gow1, B. Graham1, J.P. Graves40, H. Greuner18, B. Grierson43, J. Griffiths1, S. Griph1, D. Grist1, W. Gromelski58, M. Groth59, R. Grove29, M. Gruca58, D. Guard1, N. Gupta1, C. Gurl1, A. Gusarov83, L. Hackett1, S. Hacquin27,30, R. Hager43, L. Hägg16, A. Hakola6, M. Halitovs24, S. Hall1, S.A. Hall1, S. Hallworth-Cook1, C.J. Ham1, D. Hamaguchi7, M. Hamed27, C. Hamlyn-Harris1, K. Hammond1, E. Harford1, J.R. Harrison1, D. Harting1, Y. Hatano84, D.R. Hatch50, T. Haupt1, J. Hawes1, N.C. Hawkes1, J. Hawkins1, T. Hayashi7, S. Hazael1, S. Hazel1, P. Heesterman1, B. Heidbrink85, W. Helou13, O. Hemming1, S.S. Henderson1, R.B. Henriques2, D. Hepple1, J. Herfindal29, G. Hermon1, J. Hill1, J.C. Hillesheim1, K. Hizanidis26, A. Hjalmarsson16, A. Ho60, J. Hobirk18, O. Hoenen13, C. Hogben1, A. Hollingsworth1, S. Hollis1, E. Hollmann68, M. Hölzl18, B. Homan45, M. Hook1, D. Hopley1, J. Horácek39, D. Horsley1, N. Horsten59, A. Horton1, L.D. Horton30,40, L. Horvath1,72, S. Hotchin1, R. Howell1, Z. Hu56, A. Huber44, V. Huber44, T. Huddleston1, G.T.A. Huijsmans13, P. Huynh27, A. Hynes1, M. Iliasova4, D. Imrie1, M. Imrísek39, J. Ingleby1, P. Innocente23, K. Insulander Björk73, N. Isernia8, I. Ivanova-Stanik58, E. Ivings1, S. Jablonski58, S. Jachmich13,30,51, T. Jackson1, P. Jacquet1, H. Järleblad86, F. Jaulmes39, J.Jenaro Rodriguez1, I. Jepu63, E. Joffrin27, R. Johnson1, T. Johnson34, J. Johnston1, C. Jones1, G. Jones1, L. Jones1, N. Jones1, T. Jones1, A. Joyce1, R. Juarez14, M. Juvonen1, P. Kalnin¸ a24, T. Kaltiaisenaho6, J. Kaniewski1, A. Kantor1, A. Kappatou18, J. Karhunen5, D. Karkinsky1, Yu Kashchuk87, M. Kaufman29, G. Kaveney1, Ye.O. Kazakov51, V. Kazantzidis26, D.L. Keeling1, R. Kelly1, M. Kempenaars13, C. Kennedy1, D. Kennedy1, J. Kent1, K. Khan1, E. Khilkevich4, C. Kiefer18, J. Kilpeläinen59, C. Kim32, Hyun-Tae Kim1,30, S.H. Kim13, D.B. King1, R. King1, D. Kinna1, V.G. Kiptily1, A. Kirjasuo6, K.K. Kirov1, A. Kirschner44, T. kiviniemi59, G. Kizane24, M. Klas88, C. Klepper29, A. Klix31, G. Kneale1, M. Knight1, P. Knight1, R. Knights1, S. Knipe1, M. Knolker32, S. Knott89, M. Kocan13, F. Köchl1, I. Kodeli65, Y. Kolesnichenko82, Y. Kominis26, M. Kong1, V. Korovin71, B. Kos65, D. Kos1, H.R. Koslowski44, M. Kotschenreuther50, M. Koubiti54, E. Kowalska-Strzeciwilk ˛ 58, K. Koziol3, A. Krasilnikov87, V. Krasilnikov13,15, M. Kresina1,27, K. Krieger18, N. Krishnan1, A. Krivska51, U. Kruezi13, I. Ksia˛zek ˙ 90, A.B. Kukushkin11, H. Kumpulainen59, T. Kurki-Suonio59, H. Kurotaki7, S. Kwak36, O.J. Kwon91, L. Laguardia12, E. Lagzdina24, A. Lahtinen5, A. Laing1, N. Lam1, H.T. Lambertz44, B. Lane1, C. Lane1, E.Lascas Neto40, E. Łaszynska58, K.D. Lawson1, A. Lazaros26, E. Lazzaro12, G. Learoyd1, Chanyoung Lee92, S.E. Lee84, S. Leerink59, T. Leeson1, X. Lefebvre1, H.J. Leggate67, J. Lehmann1, M. Lehnen13, D. Leichtle31,93, F. Leipold13, I. Lengar65, M. Lennholm1,75, E. Leon Gutierrez9, B. Lepiavko82, J. Leppänen6, E. Lerche51, A. Lescinskis24, J. Lewis1, W. Leysen83, L. Li44, Y. Li44, J. Likonen6, Ch. Linsmeier44, B. Lipschultz72, X. Litaudon27,30, E. Litherland-Smith1, F. Liu27,30, T. Loarer27, A. Loarte13, R. Lobel1, B. Lomanowski29, P.J. Lomas1, J.M. Lopez21, R. Lorenzini23, S. Loreti17, U. Losada9, V.P. Loschiavo8, M. Loughlin13, Z. Louka1, J. Lovell29, T. Lowe1, C. Lowry1,75, S. Lubbad1, T. Luce13, R. Lucock1, A. Lukin94, C. Luna95, E.de la Luna9, M. Lungaroni53, C.P. Lungu63, T. Lunt18, V. Lutsenko82, B. Lyons32, A. Lyssoivan51, M. Machielsen40, E. Macusova39, R. Mäenpää59, C.F. Maggi1, R. Maggiora96, M. Magness1, S. Mahesan1, H. Maier18, R. Maingi43, K. Malinowski58, P. Manas18,54, P. Mantica12, M.J. Mantsinen97, J. Manyer78, A. Manzanares98, Ph. Maquet13, G. Marceca40, N. Marcenko87, C. Marchetto99, O. Marchuk44, A. Mariani12, G. Mariano17, M. Marin60, M. Marinelli53, T. Markovicˇ39, D. Marocco17, L. Marot33, S. Marsden1, J. Marsh1, R. Marshall1, L. Martellucci53, A. Martin1, A.J. Martin1, R. Martone8, S. Maruyama13, M. Maslov1, S. Masuzaki19, S. Matejcik88, M. Mattei8, G.F. Matthews1, D. Matveev44, E. Matveeva39, A. Mauriya2, F. Maviglia8, M. Mayer18, M.-L. Mayoral1,69, S. Mazzi54, C. Mazzotta17, R. McAdams1, P.J. McCarthy89 K.G. McClements1, J. McClenaghan32, P. McCullen1, D.C. McDonald1, D. McGuckin1, D. McHugh1, G. McIntyre1, R. McKean1, J. McKehon1, B. McMillan57, L. McNamee1, A. McShee1, A. Meakins1, S. Medley1, C.J. Meekes60,100, K. Meghani1, A.G. Meigs1, G. Meisl18, S. Meitner29, S. Menmuir1, K. Mergia10, S. Merriman1, Ph. Mertens44, S. Meshchaninov15, A. Messiaen51, R. Michling57, P. Middleton1, D. Middleton-Gear1, J. Mietelski38, D. Milanesio96, E. Milani53, F. Militello1, A.Militello Asp1, J. Milnes1, A. Milocco56, G. Miloshevsky101, C. Minghao1, S. Minucci52, I. Miron63, M. Miyamoto102, J. Mlynár39,103, V. Moiseenko71, P. Monaghan1, I. Monakhov1, T. Moody1, S. Moon34, R. Mooney1, S. Moradi51, J. Morales27, R.B. Morales1, S. Mordijck104, L. Moreira1, L. Morgan1, F. Moro17, J. Morris1, K.-M. Morrison1, L. Msero13,33, D. Moulton1, T. Mrowetz1, T. Mundy1, M. Muraglia54, A. Murari23,30, A. Muraro12, N. Muthusonai1, B. N’Konga45, Yong-Su Na92, F. Nabais2, M. Naden1, J. Naish1, R. Naish1, F. Napoli17, E. Nardon27, V. Naulin86, M.F.F. Nave2, I. Nedzelskiy3, G. Nemtsev15, V. Nesenevich4, I. Nestoras1, R. Neu18, V.S. Neverov11, S. Ng1, M. Nicassio1, A.H. Nielsen86, D. Nina2, D. Nishijima105, C. Noble1, C.R. Nobs1, M. Nocente56, D. Nodwell1, K. Nordlund5, H. Nordman13, R. Normanton1, J.M. Noterdaeme18, S. Nowak12, E. Nunn1, H. Nyström34, M. Oberparleiter74, B. Obryk38, J. O’Callaghan1, T. Odupitan1, H.J.C. Oliver1,50, R. Olney1, M. O’Mullane106, J. Ongena51, E. Organ1, F. Orsitto8, J. Orszagh88, T. Osborne32, R. Otin1, T. Otsuka107, A. Owen1, Y. Oya108, M. Oyaizu7, R. Paccagnella23, N. Pace1, L.W. Packer1, S. Paige1, E. Pajuste24, D. Palade63, S.J.P. Pamela1, N. Panadero9, E. Panontin56, A. Papadopoulos26, G. Papp18, P. Papp88, V.V. Parail1, C. Pardanaud54, J. Parisi1,109, F.Parra Diaz109, A. Parsloe1, M. Parsons29, N. Parsons1, M. Passeri53, A. Patel1, A. Pau40, G. Pautasso18, R. Pavlichenko71, A. Pavone36, E. Pawelec90, C.Paz Soldan110, A. Peacock1,75, M. Pearce1, E. Peluso53, C. Penot13, K. Pepperell1, R. Pereira2, T. Pereira2, E.Perelli Cippo12, P. Pereslavtsev107, C. Perez von Thun58, V. Pericoli58, D. Perry1, M. Peterka39, P. Petersson34, G. Petravich22, N. Petrella1, M. Peyman1, M. Pillon17, S. Pinches13, G. Pintsuk44, W. Pires de Sá55, A. Pires dos Reis55, C. Piron17, L. Pionr23,111, A. Pironti8, R. Pitts13, K.L. van de Plassche60, N. Platt1, V. Plyusnin2, M. Podesta43, G. Pokol22, F.M. Poli43, O.G. Pompilian63, S. Popovichev1, M. Poradzinski58, M.T. Porfiri17, M. Porkolab20, C. Porosnicu63, M. Porton1, G. Poulipoulis112, I. Predebon23, G. Prestopino53, C. Price1, D. Price1, M. Price1, D. Primetzhofer16, P. Prior1, G. Provatas46, G. Pucella17, P. Puglia40, K. Purahoo1, I. Pusztai73, O. Putignano56, T. Pütterich18, A. Quercia8, E. Rachlew73, G. Radulescu29, V. Radulovic65, M. Rainford1, P. Raj31, G. Ralph1, G. Ramogida17, D. Rasmussen29, J.J. Rasmussen86, G. Rattá9, S. Ratynskaia113, M. Rebai12, D. Refy22, R. Reichle13, M. Reinke29, D. Reiser44, C. Reux27, S. Reynolds1, M.L. Richiusa1, S. Richyal1, D. Rigamonti12, F.G. Rimini1, J. Risner29, M. Riva17, J. Rivero-Rodriguez79, C.M. Roach1, R. Robins1, S. Robinson1, D. Robson1, R. Rodionov87, P. Rodrigues2, M.Rodriguez Ramos109, P. Rodriguez-Fernandez3, F. Romanelli74, M. Romanelli1, S. Romanelli1, J. Romazanov44, R. Rossi53, S. Rowe1, D. Rowlands1,30, M. Rubel34, G. Rubinacci8, G. Rubino52, L. Ruchko55, M. Ruiz21, J.Ruiz Ruiz109, C. Ruset63, J. Rzadkiewicz3, S. Saarelma1, E. Safi5, A. Sahlberg16, M. Salewski86, A. Salmi6, R. Salmon1, F. Salzedas2,114, I. Sanders1, D. Sandiford1, B. Santos2, A. Santucci17, K. Särkimäki73, R. Sarwar1, I. Sarychev1, O. Sauter40, P. Sauwan14, N. Scapin48, F. Schluck44, K. Schmid18, S. Schmuck12, M. Schneider13, P.A. Schneider18, D. Schwörer67, G. Scott1, M. Scott1, D. Scraggs1, S. Scully1, M. Segato1, Jaemin Seo92, G. Sergienko44, M. Sertoli1, S.E. Sharapov1, A. Shaw1, H. Sheikh1, U. Sheikh40, A. Shepherd1, A. Shevelev4, P. Shigin13, K. Shinohara115, S. Shiraiwa43, D. Shiraki29, M. Short1, G. Sias25, S.A. Silburn1, A. Silva2, C. Silva2, J. Silva1, D. Silvagni18, D. Simfukwe1, J. Simpson1,59, D. Sinclair1, S.K. Sipilä59, A.C.C. Sips75, P. Siren5, A. Sirinelli13, H. Sjöstrand16, N. Skinner1, J. Slater1, N. Smith1, P. Smith1, J. Snell1, G. Snoep60, L. Snoj65, P. Snyder32, S. Soare63, E.R. Solano9, V. Solokha59, A. Somers67, C. Sommariva40, K. Soni33, E. Sorokovoy71, M. Sos39, J. Sousa2, C. Sozzi12, S. Spagnolo23, T. Spelzini1, F. Spineanu63, D. Spong29, D. Sprada1, S. Sridhar27, C. Srinivasan1, G. Stables1, G. Staebler32, I. Stamatelatos10, Z. Stancar65, P. Staniec1, G. Stankunas116, M. Stead1, E. Stefanikova34, A. Stephen1, J. Stephens1, P. Stevenson1, M. Stojanov1, P. Strand74, H.R. Strauss117, S. Strikwerda1, P. Ström34, C.I. Stuart1, W. Studholme1, M. Subramani1, E. Suchkov88, S. Sumida7, H.J. Sun1, T.E. Susts24, J. Svensson36, J. Svoboda39, R. Sweeney20, D. Sytnykov71, T. Szabolics22, G. Szepesi1, B. Tabia1, T. Tadic´46, B. Tál18, T. Tala6, A. Tallargio1, P. Tamain27, H. Tan1, K. Tanaka19, W. Tang43, M. Tardocchi12, D. Taylor1, A.S. Teimane24, G. Telesca58, N. Teplova4, A. Teplukhina43, D. Terentyev83, A. Terra44, D. Terranova23, N. Terranova17, D. Testa40, E. Tholerus1,34, J. Thomas1, E. Thoren113, A. Thorman1, W. Tierens18, R.A. Tinguely20, A. Tipton1, H. Todd1, M. Tokitani19, P. Tolias113, M. Tomes39, A. Tookey1, Y. Torikai118, U. von Toussaint18, P. Tsavalas10, D. Tskhakaya39,119, I. Turner1, M. Turner1, M.M. Turner67, M. Turnyanskiy1,69, G. Tvalashvili1, S. Tyrrell1, M. Tyshchenko82, A. Uccello12, V. Udintsev13, G. Urbanczyk27, A. Vadgama1, D. Valcarcel1, M. Valisa23, P.Vallejos Olivares34, O. Vallhagen73, M. Valovicˇ1, D. Van Eester51, J. Varje59, S. Vartanian27, T. Vasilopoulou10, G. Vayakis13, M. Vecsei22, J. Vega9, S. Ventre8, G. Verdoolaege64, C. Verona53, G.Verona Rinati53, E. Veshchev13, N. Vianello23, E. Viezzer79, L. Vignitchouk113, R. Vila9, R. Villari17, F. Villone8, P. Vincenzi23, I. Vinyar94, B. Viola17, A.J. Virtanen59, A. Vitins24, Z. Vizvary1, G. Vlad17, M. Vlad63, P. Vondrácek39, P.de Vries13, B. Wakeling1, N.R. Walkden1, M. Walker1, R. Walker1, M. Walsh13, E. Wang44, N. Wang1, S. Warder1, R. Warren1, J. Waterhouse1, C. Watts13, T. Wauters51, A. Weckmann34, H.Wedderburn Maxwell1, M. Weiland18, H. Weisen40, M. Weiszflog16, P. Welch1, N. Wendler58, A. West1, M. Wheatley1, S. Wheeler1, A. Whitehead1, D. Whittaker1, A. Widdowson1, S. Wiesen44, J. Wilkinson1, J.C. Williams1, D. Willoughby1, I. Wilson1, J. Wilson1, T. Wilson1, M. Wischmeier18, P. Wise1, G. Withenshaw1, A. Withycombe1, D. Witts1, A. Wojcik-Gargula38, E. Wolfrum18, R. Wood1, C. Woodley1, R. Woodley1, B. Woods1, J. Wright1, J.C. Wright20, T. Xu1, D. Yadikin74, M. Yajima19, Y. Yakovenko82, Y. Yang13, W. Yanling44, V. Yanovskiy39, I. Young1, R. Young1, R.J. Zabolockis24, J. Zacks1, R. Zagorski3, F.S. Zaitsev88, L. Zakharov5, A. Zarins24, D. Zarzoso Fernandez54, K.-D. Zastrow1, Y. Zayachuk1, M. Zerbini17, W. Zhang18, Y. Zhou34, M. Zlobinski44, A. Zocco36, A. Zohar65, V. Zoita63, S. Zoletnik22, V.K. Zotta81, I. Zoulias1, W. Zwingmann2 and I. Zychor3 // 1 United Kingdom Atomic Energy Authority, Culham Science Centre, Abingdon, Oxon, OX14 3DB, United Kingdom of Great Britain and Northern Ireland 2 Instituto de Plasmas e Fusao Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal 3 National Centre for Nuclear Research (NCBJ), 05-400 Otwock-Swierk, Poland 4 Ioffe Physico-Technical Institute, 26 Politekhnicheskaya, St Petersburg 194021, Russia 5 University of Helsinki, PO Box 43, FI-00014 University of Helsinki, Finland 6 VTT Technical Research Centre of Finland, PO Box 1000, FIN-02044 VTT, Finland 7 National Institutes for Quantum and Radiological Science and Technology, Naka, Ibaraki 311-0193, Japan 8 Consorzio CREATE, Via Claudio 21, 80125 Napoli, Italy 9 Laboratorio Nacional de Fusión, CIEMAT, Madrid, Spain 10 NCSR ‘Demokritos’ 153 10, Agia Paraskevi Attikis, Greece 11 NRC Kurchatov Institute, 1 Kurchatov Square, Moscow 123182, Russia 12 Institute for Plasma Science and Technology, CNR, via R. Cozzi 53, 20125 Milano, Italy 13 ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 Saint Paul Lez Durance Cedex, France 14 Universidad Nacional de Educacion a Distancia, Dept Ingn Energet, Calle Juan del Rosal 12, E-28040 Madrid, Spain 15 Troitsk Insitute of Innovating and Thermonuclear Research (TRINITI), Troitsk 142190, Moscow Region, Russia 16 Department of Physics and Astronomy, Uppsala University, SE-75120 Uppsala, Sweden 17 Dip.to Fusione e Tecnologie per la Sicurezza Nucleare, ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati (Roma), Italy 18 Max-Planck-Institut für Plasmaphysik, D-85748 Garching, Germany 19 National Institute for Fusion Science, Oroshi, Toki, Gifu 509-5292, Japan 20 MIT Plasma Science and Fusion Center, Cambridge, MA 02139, United States of America 21 Universidad Politécnica de Madrid, Grupo I2A2, Madrid, Spain 22 Centre for Energy Research, POB 49, H-1525 Budapest, Hungary 23 Consorzio RFX, Corso Stati Uniti 4, 35127 Padova, Italy 24 University of Latvia, 19 Raina Blvd., Riga, LV 1586, Latvia 25 Department of Electrical and Electronic Engineering, University of Cagliari, Piazza d’Armi 09123 Cagliari, Italy 26 National Technical University of Athens, Iroon Politechniou 9, 157 73 Zografou, Athens, Greece 27 CEA, IRFM, F-13108 Saint Paul Lez Durance, France 28 Dipartimento di Ingegneria Elettrica Elettronica e Informatica, Università degli Studi di Catania, 95125 Catania, Italy 29 Oak Ridge National Laboratory, Oak Ridge, TN 37831, TN, United States of America 30 EUROfusion Programme Management Unit, Culham Science Centre, Culham, OX14 3DB, United Kingdom of Great Britain and Northern Ireland 31 Karlsruhe Institute of Technology, PO Box 3640, D-76021 Karlsruhe, Germany 32 General Atomics, PO Box 85608, San Diego, CA 92186-5608, United States of America 33 Department of Physics, University of Basel, Switzerland 34 Fusion Plasma Physics, EECS, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden 35 Institut Jean Lamour, U

    Overview of T and D–T results in JET with ITER-like wall

    Get PDF

    Overview of T and D-T results in JET with ITER-like wall

    Get PDF
    In 2021 JET exploited its unique capabilities to operate with T and D–T fuel with an ITER-like Be/W wall (JET-ILW). This second major JET D–T campaign (DTE2), after DTE1 in 1997, represented the culmination of a series of JET enhancements—new fusion diagnostics, new T injection capabilities, refurbishment of the T plant, increased auxiliary heating, in-vessel calibration of 14 MeV neutron yield monitors—as well as significant advances in plasma theory and modelling in the fusion community. DTE2 was complemented by a sequence of isotope physics campaigns encompassing operation in pure tritium at high T-NBI power. Carefully conducted for safe operation with tritium, the new T and D–T experiments used 1 kg of T (vs 100 g in DTE1), yielding the most fusion reactor relevant D–T plasmas to date and expanding our understanding of isotopes and D–T mixture physics. Furthermore, since the JET T and DTE2 campaigns occurred almost 25 years after the last major D–T tokamak experiment, it was also a strategic goal of the European fusion programme to refresh operational experience of a nuclear tokamak to prepare staff for ITER operation. The key physics results of the JET T and DTE2 experiments, carried out within the EUROfusion JET1 work package, are reported in this paper. Progress in the technological exploitation of JET D–T operations, development and validation of nuclear codes, neutronic tools and techniques for ITER operations carried out by EUROfusion (started within the Horizon 2020 Framework Programme and continuing under the Horizon Europe FP) are reported in (Litaudon et al Nucl. Fusion accepted), while JET experience on T and D–T operations is presented in (King et al Nucl. Fusion submitted)

    Overview of JET results for optimising ITER operation

    Get PDF
    The JET 2019–2020 scientific and technological programme exploited the results of years of concerted scientific and engineering work, including the ITER-like wall (ILW: Be wall and W divertor) installed in 2010, improved diagnostic capabilities now fully available, a major neutral beam injection upgrade providing record power in 2019–2020, and tested the technical and procedural preparation for safe operation with tritium. Research along three complementary axes yielded a wealth of new results. Firstly, the JET plasma programme delivered scenarios suitable for high fusion power and alpha particle (α) physics in the coming D–T campaign (DTE2), with record sustained neutron rates, as well as plasmas for clarifying the impact of isotope mass on plasma core, edge and plasma-wall interactions, and for ITER pre-fusion power operation. The efficacy of the newly installed shattered pellet injector for mitigating disruption forces and runaway electrons was demonstrated. Secondly, research on the consequences of long-term exposure to JET-ILW plasma was completed, with emphasis on wall damage and fuel retention, and with analyses of wall materials and dust particles that will help validate assumptions and codes for design and operation of ITER and DEMO. Thirdly, the nuclear technology programme aiming to deliver maximum technological return from operations in D, T and D–T benefited from the highest D–D neutron yield in years, securing results for validating radiation transport and activation codes, and nuclear data for ITER

    Shattered pellet injection experiments at JET in support of the ITER disruption mitigation system design

    Get PDF
    A series of experiments have been executed at JET to assess the efficacy of the newly installed shattered pellet injection (SPI) system in mitigating the effects of disruptions. Issues, important for the ITER disruption mitigation system, such as thermal load mitigation, avoidance of runaway electron (RE) formation, radiation asymmetries during thermal quench mitigation, electromagnetic load control and RE energy dissipation have been addressed over a large parameter range. The efficiency of the mitigation has been examined for the various SPI injection strategies. The paper summarises the results from these JET SPI experiments and discusses their implications for the ITER disruption mitigation scheme

    The role of ETG modes in JET-ILW pedestals with varying levels of power and fuelling

    Get PDF
    We present the results of GENE gyrokinetic calculations based on a series of JET-ITER-like-wall (ILW) type I ELMy H-mode discharges operating with similar experimental inputs but at different levels of power and gas fuelling. We show that turbulence due to electron-temperature-gradient (ETGs) modes produces a significant amount of heat flux in four JET-ILW discharges, and, when combined with neoclassical simulations, is able to reproduce the experimental heat flux for the two low gas pulses. The simulations plausibly reproduce the high-gas heat fluxes as well, although power balance analysis is complicated by short ELM cycles. By independently varying the normalised temperature gradients (omega(T)(e)) and normalised density gradients (omega(ne )) around their experimental values, we demonstrate that it is the ratio of these two quantities eta(e) = omega(Te)/omega(ne) that determines the location of the peak in the ETG growth rate and heat flux spectra. The heat flux increases rapidly as eta(e) increases above the experimental point, suggesting that ETGs limit the temperature gradient in these pulses. When quantities are normalised using the minor radius, only increases in omega(Te) produce appreciable increases in the ETG growth rates, as well as the largest increases in turbulent heat flux which follow scalings similar to that of critical balance theory. However, when the heat flux is normalised to the electron gyro-Bohm heat flux using the temperature gradient scale length L-Te, it follows a linear trend in correspondence with previous work by different authors

    Spectroscopic camera analysis of the roles of molecularly assisted reaction chains during detachment in JET L-mode plasmas

    Get PDF
    The roles of the molecularly assisted ionization (MAI), recombination (MAR) and dissociation (MAD) reaction chains with respect to the purely atomic ionization and recombination processes were studied experimentally during detachment in low-confinement mode (L-mode) plasmas in JET with the help of experimentally inferred divertor plasma and neutral conditions, extracted previously from filtered camera observations of deuterium Balmer emission, and the reaction coefficients provided by the ADAS, AMJUEL and H2VIBR atomic and molecular databases. The direct contribution of MAI and MAR in the outer divertor particle balance was found to be inferior to the electron-atom ionization (EAI) and electron-ion recombination (EIR). Near the outer strike point, a strong atom source due to the D+2-driven MAD was, however, observed to correlate with the onset of detachment at outer strike point temperatures of Te,osp = 0.9-2.0 eV via increased plasma-neutral interactions before the increasing dominance of EIR at Te,osp < 0.9 eV, followed by increasing degree of detachment. The analysis was supported by predictions from EDGE2D-EIRENE simulations which were in qualitative agreement with the experimental observations
    corecore