88 research outputs found

    Evaluation of (MnxFe1-x)2TiyOz Particles as Oxygen Carrier for Chemical Looping Combustion

    Get PDF
    The present work accomplishes a screening of the performance of Mn-Fe-Ti based oxygen carriers, prepared with different Mn/(Mn+Fe) molar ratios in the general formula (MnyFe1-y)Ti0.15Ox. The oxygen carriers were prepared by physical mixing followed by pelletizing under pressure, calcining, crushing and sieving in the 100-300 µm particle size interval. The characterization of the carriers is based on the evaluation of their crushing strength, magnetic properties and reduction and oxidation behavior through TGA experiments at temperatures suitable for the CLC process (i.e. 850-950 °C). In addition, the main chemical structures of the Mn-Fe-Ti system were identified as a function of the Mn/(Mn+Fe) molar ratio. Oxygen uncoupling property was analyzed by reduction under a N2 atmosphere and the capability to interact with fuel gases was analyzed by using CH4, H2 and CO. Results indicate that the (MnyFe1-y)Ti0.15Ox oxygen carriers with Mn/(Mn+Fe) molar ratios of 0.55-0.87 have very promising properties for the CLC process with solid fuels

    Mercury release and speciation in chemical looping combustion of coal

    Get PDF
    In the in situ Gasification Chemical Looping Combustion of coal (iG-CLC), the fuel is gasified in situ in the fuel reactor and gasification products are converted to CO2 and H2O by reaction with the oxygen carrier. This work is the first study on mercury release in Chemical Looping Combustion of coal. The fraction of the mercury in coal vaporized in the fuel reactor depended mainly on the fuel reactor temperature and the coal type. In the fuel reactor, mercury was mainly emitted as Hg0 in the gas phase and the amount increased with the temperature. In the air reactor, mercury was mostly emitted as Hg2+. In a real CLC system, mercury emissions to the atmosphere will decrease compared to conventional combustion as only mercury released in the air reactor will reach the atmosphere. However, measures should be taken to reduce Hg0 in the CO2 stream before the purification and compression steps in order to avoid operational problems.The authors thank the Government of Aragón and La Caixa (2012-GA-LC-076 project) and the Spanish Ministry for Science and Innovation (ENE2010-19550 project) for the financial support. P. Gayán thanks CSIC for the financial support of the project 201180E102. The authors also thank to Alcoa Europe-Alúmina Española S.A. for providing the Fe-enriched sand fraction used in this work. G. Galo is acknowledged for his contribution to the experimental results.Peer reviewe

    Co-firing of biomass with coals Part 1. Thermogravimetric kinetic analysis of combustion of fir (abies bornmulleriana) wood

    Get PDF
    The chemical composition and reactivity of fir (Abies bornmulleriana) wood under non-isothermal thermogravimetric (TG) conditions were studied. Oxidation of the wood sample at temperatures near 600 A degrees C caused the loss of aliphatics from the structure of the wood and created a char heavily containing C-O functionalities and of highly aromatic character. On-line FTIR recordings of the combustion of wood indicated the oxidation of carbonaceous and hydrogen content of the wood and release of some hydrocarbons due to pyrolysis reactions that occurred during combustion of the wood. TG analysis was used to study combustion of fir wood. Non-isothermal TG data were used to evaluate the kinetics of the combustion of this carbonaceous material. The article reports application of Ozawa-Flynn-Wall model to deal with non-isothermal TG data for the evaluation of the activation energy corresponding to the combustion of the fir wood. The average activation energy related to fir wood combustion was 128.9 kJ/mol, and the average reaction order for the combustion of wood was calculated as 0.30
    corecore