1,026 research outputs found

    Jovimagnetic secular variation

    Get PDF
    Long term variations of a planetary magnetic field are one of the few observables available in the study of planetary interiors and dynamo theory. While variations of the geomagnetic field were accessible to direct measurement for centuries, knowledge of the secular variations of other planetary dynamos is limited. New limits on Jovimagnetic secular variations were found by comparison of a Jovian internal field model obtained from the Voyager 1 magnetic field observations at epoch 1979.2 with the epoch 1974.9 Pioneer 11 O4 model. No significant secular variation of either the magnitude or position of the Jovidipole is found for the years 1974.9 through 1979.2, although a small Earth-like variation cannot be ruled out

    Science Concierge: A fast content-based recommendation system for scientific publications

    Full text link
    Finding relevant publications is important for scientists who have to cope with exponentially increasing numbers of scholarly material. Algorithms can help with this task as they help for music, movie, and product recommendations. However, we know little about the performance of these algorithms with scholarly material. Here, we develop an algorithm, and an accompanying Python library, that implements a recommendation system based on the content of articles. Design principles are to adapt to new content, provide near-real time suggestions, and be open source. We tested the library on 15K posters from the Society of Neuroscience Conference 2015. Human curated topics are used to cross validate parameters in the algorithm and produce a similarity metric that maximally correlates with human judgments. We show that our algorithm significantly outperformed suggestions based on keywords. The work presented here promises to make the exploration of scholarly material faster and more accurate.Comment: 12 pages, 5 figure

    Currents in Saturn's magnetosphere

    Get PDF
    A model of Saturn's magnetospheric magnetic field is obtained from the Voyager 1 and 2 observations. A representation consisting of the Z sub 3 zonal harmonic model of Saturn's planetary magnetic field together with an explicit model of Saturn's planetary magnetic field and a model of the equatorial ring current fits the observations well within r 20 R sub S, with the exception of data obtained during the Voyager 2 inbound pass

    Voyager 1 assessment of Jupiter's planetary magnetic field

    Get PDF
    An estimate of Jupiter's planetary magnetic field is obtained from the Voyager 1 observations of the Jovian magnetosphere. An explicit model for the magnetodisc current system is combined with a spherical harmonic model of the planetary field with both sets of parameters determined simultaneously using a nonlinear generalized inverse methodology. The resulting model fits the observations extremely well throughout the analysis interval (r 20 Jovian radii). The Jovian internal field model obtained from the Voyager 1 data is very similar to the octopole Pioneer 11 models. The best fitting magnetodisc lies in the centrifugal equator, 2/3 of the way between the rotational and magnetic equators, as appropriate for centrifugal loading of the magnetosphere by a cold plasma

    The Z3 model of Saturns magnetic field and the Pioneer 11 vector helium magnetometer observations

    Get PDF
    Magnetic field observations obtained by the Pioneer 11 vector helium magnetometer are compared with the Z(sub 3) model magnetic field. These Pioneer 11 observations, obtained at close-in radial distances, constitute an important and independent test of the Z(sub 3) zonal harmonic model, which was derived from Voyager 1 and Voyager 2 fluxgate magnetometer observations. Differences between the Pioneer 11 magnetometer and the Z(sub 3) model field are found to be small (approximately 1%) and quantitatively consistent with the expected instrumental accuracy. A detailed examination of these differences in spacecraft payload coordinates shows that they are uniquely associated with the instrument frame of reference and operation. A much improved fit to the Pioneer 11 observations is obtained by rotation of the instrument coordinate system about the spacecraft spin axis by 1.4 degree. With this adjustment, possibly associated with an instrumental phase lag or roll attitude error, the Pioneer 11 vector helium magnetometer observations are fully consistent with the Voyager Z(sub 3) model

    Contrasting patterns of selection between MHC I and II across populations of Humboldt and Magellanic penguins

    Get PDF
    Indexación: Web of ScienceThe evolutionary and adaptive potential of populations or species facing an emerging infectious disease depends on their genetic diversity in genes, such as the major histocompatibility complex (MHC). In birds, MHC class I deals predominantly with intracellular infections (e.g., viruses) and MHC class II with extracellular infections (e.g., bacteria). Therefore, patterns of MHC I and II diversity may differ between species and across populations of species depending on the relative effect of local and global environmental selective pressures, genetic drift, and gene flow. We hypothesize that high gene flow among populations of Humboldt and Magellanic penguins limits local adaptation in MHC I and MHC II, and signatures of selection differ between markers, locations, and species. We evaluated the MHC I and II diversity using 454 next-generation sequencing of 100 Humboldt and 75 Magellanic penguins from seven different breeding colonies. Higher genetic diversity was observed in MHC I than MHC II for both species, explained by more than one MHC I loci identified. Large population sizes, high gene flow, and/or similar selection pressures maintain diversity but limit local adaptation in MHC I. A pattern of isolation by distance was observed for MHC II for Humboldt penguin suggesting local adaptation, mainly on the northernmost studied locality. Furthermore, trans species alleles were found due to a recent speciation for the genus or convergent evolution. High MHC I and MHC II gene diversity described is extremely advantageous for the long term survival of the species.http://onlinelibrary.wiley.com/doi/10.1002/ece3.2502/epd
    • …
    corecore