12 research outputs found

    Radiales time series: 25 years building monitoring and analytical capacities in the Iberian shelf

    Get PDF
    The RADIALES program has been monitoring shelf waters in Spain for the last 25 years. This is the oldest field program for multidisciplinary marine research addressing long term variability issues at ecosystem level. Core observations include ship-based hydrographic, biogeochemical and plankton observations at monthly frequency in several oceanographic sections along the Iberian shelf. These observations are complemented with buoy and satellite observations and all these data are used to validate hydrographic and ecological models of plankton at local and regional scales. From the first series initiated in the northwestern shelf other programs extended the observations to the Mediterranean and off shelf waters using the same approach. The success of RADIALES extends beyond pure scientific knowledge, as the expertise gathered with the program has been applied to solve multiple environmental issues, from fisheries and pollution to global change. The program is also instrumental for educational purposes, allowing the specialization of students and technicians. Thanks to a basal funding provided by the Instituto Español de Oceanografía, the program currently obtains more than 60% of its annual budget from competitive calls, as it offers an unique platform for coastal research. Among the results of this program are 400 publications, including peer-review papers, 24 Thesis and 54 scientific reports. The RADIALES data are freely distributed to national and international users as a contribution to the development of cost-effective ocean research and marine servicesIEO (RADIALES

    Vertical biogeographical overview of the Zooplankton community across the Atlantic, Pacific and Indian ocean (35ºN-40ºS)

    Get PDF
    From December 2010 to June 2011 the mesozooplankton has been sampled at the deep Atlantic, Indian and Pacific Ocean (*). From surface to 3000 m depth a HYDROBIOSS multinet was used distinguishing the epipelagic (77%), mesopelagic (11%) and bathypelagic zones (11%), where five layers were usually sampled (0-200, 200-500, 500-1000, 1000-2000 and 2000-3000 m depth). Among the three oceans, no large differences on abundance were found when taxonomic groups were considered, being always depth the most important factor affecting the vertical zooplankton distribution. The zooplankton abundance strongly decreased with depth and very low abundance was found at deeper waters. Very irregular spatial distribution was observed all across the three oceans, finding the lowest abundance in the south and western Pacific region. Copepods were always the most abundant contributors of the zooplankton community (84%) and more than 260 species identified. They were followed by chaetognaths (5%), siphonophores (3%), ostracods (2%) and euphausiids (1%). In a biogeographical overview, the vertical distribution of the most abundant copepods is analyzed, finding the largest copepods at deeper stratum, where small cosmopolitan copepods were also found

    Vertical variability of trophic positions of zooplankton in the deep Ocean

    Get PDF
    Zooplankton plays a key role in oceanic ecosystems. However, the trophic ecology of organisms in deep layers of the ocean is poorly known. In this study we analyze the variability of trophic positions of zooplankton collected across three ocean basins in the epi-, meso and bathypelagic domains. Stable carbon and nitrogen isotopes were used as indicators of the sources of nutrients and positions within the food web. The enrichment in heavy nitrogen isotopes with depth and the correlation between surface and deep samples revealed that deep zooplankton was supported by local epipelagic production, subsequently processed through the water column. In addition the nitrogen isotope enrichment of carnivores vs. omnivores was consistent across ocean biomes and water layers, suggesting a similar trophic structure of the pelagic food web in the deep ocean despite variations in the nitrogen sources. Siphonofora, Chaetognata and Myctophida were the top predators while Calanoid Copepoda and Mysidacea displayed the lowest trophic positions. In contrast, carbon isotopes did not show significant variations with depth or trophic groups implying low influence of coastal production in deep ocean food webs

    Fixed and Drifting Buoys around the National Spanish Waters

    No full text
    Improving the knowledge of the seas surrounding the Iberian Peninsula, Balearic and Canary islands is one of the objectives for the Spanish oceanographic community. For that purpose, a number of fixed and drifting buoys have been deployed in the last 25 years. Parameters measured included sea surface temperature and salinity, ocean current velocity, air temperature, humidity, wave characteristic and wind velocity. The national aim is to increase the quantity, quality, coverage and timeliness of atmospheric and oceanographic data. These observations are used immediately to improve forecast and therefore increase marine safety

    Bathypelagic fauna as a main driver of carbon sequestration in the ocean

    Get PDF
    Sequestration, in contrast to export, is a mechanism of the biological pump occurring when carbon cannot return to the atmosphere in at least 100 years, normally the carbon transported below 1000 m depth. Pelagic fauna release carbon at depth through respiration, egestion, excretion, moulting, lipid consumption and mortality supporting deep-sea food webs. Knowledge about this transport in the mesopelagic layer is growing. However, the role of the pelagic fauna to fuel the bathypelagic zone, the layer where effective carbon sequestration occurs, is largely unknown. Here we report net zooplankton biomass in the meso- and bathypelagic zones showing significant relationships with primary production (PP) at a global scale during the Malaspina Circumnavigation Expedition. We also reviewed available data on zooplankton biomass at the different biogeographical provinces also showing significant correlations with large-scale estimates of PP, implying the transference of a significant fraction of PP from the epipelagic to the deep ocean. Carbon sequestration assessed only from conservative estimates of zooplankton mortality in the bathypelagic was 0.43 PgC y-1, in the order of recent estimates of gravitational carbon sequestration. These values and those recently reviewed due to lipid consumption almost triples ocean carbon sequestration estimates in Westerlies and Polar biomes. These results point at a pivotal role of the pelagic fauna in ocean carbon sequestration as, besides zooplankton, downward transport by macroplankton and micronekton should also be accounted for. Our results raises the question of whether we are severely underestimating carbon sequestration in the ocea

    Large deep-sea zooplankton biomass mirrors primary productivity in the global ocean.

    No full text
    The biological pump transports organic carbon produced by photosynthesis to the meso- and bathypelagic zones, the latter removing carbon from exchanging with the atmosphere over centennial time scales. Organisms living in both zones are supported by a passive flux of particles, and carbon transported to the deep-sea through vertical zooplankton migrations. Here we report globally-coherent positive relationships between zooplankton biomass in the epi-, meso-, and bathypelagic layers and average net primary production (NPP). We do so based on a global assessment of available deep-sea zooplankton biomass data and largescale estimates of average NPP. The relationships obtained imply that increased NPP leads to enhanced transference of organic carbon to the deep ocean. Estimated remineralization from respiration rates by deep-sea zooplankton requires a minimum supply of 0.44 Pg C y−1 transported into the bathypelagic ocean, comparable to the passive carbon sequestration. We suggest that the global coupling between NPP and bathypelagic zooplankton biomass must be also supported by an active transport mechanism associated to vertical zooplankton migration
    corecore