109 research outputs found

    Label-Free Immunoassay Based on Functionalized Nanopipette Probes

    Get PDF

    Immunoassays Using Artificial Nanopores

    Get PDF

    Functionalized nanopipettes: toward label-free, single cell biosensors

    Get PDF
    Nanopipette technology has been proven to be a label-free biosensor capable of identifying DNA and proteins. The nanopipette can include specific recognition elements for analyte discrimination based on size, shape, and charge density. The fully electrical read-out and the ease and low-cost fabrication are unique features that give this technology an enormous potential. Unlike other biosensing platforms, nanopipettes can be precisely manipulated with submicron accuracy and used to study single cell dynamics. This review is focused on creative applications of nanopipette technology for biosensing. We highlight the potential of this technology with a particular attention to integration of this biosensor with single cell manipulation platforms

    Tailoring Nanoprobes for Single-Cell Surgery

    Get PDF

    Photo‐Induced Radicals in Carbon Nitride and their Magnetic Signature

    Get PDF
    As a metal-free semiconductor, carbon nitride is a promising material for sustainable photocatalysis. From the large number of studies, it seems apparent that the photocatalytic activity is related to the number and type of defects present in the structure. Many defects are paramagnetic and photoresponsive and, for this reason, Electron Paramagnetic Resonance (EPR) spectroscopy is a powerful method to derive fundamental information on the structure – local, extended and electronic – of such defects which in turn impact the optical, magnetic and chemical properties of a material. This review aims at critically discussing the interpretation of EPR data of native and photoinduced radical defects in carbon nitride research highlighting strengths and limitations of this spectroscopic techniqu

    Single Cell Sensing and Manipulation by Scanning Nanopore Microscopy

    Get PDF

    Nanopore Device for Reversible Ion and Molecule Sensing or Migration

    Get PDF
    Disclosed are methods and devices for detection of ion migration and binding, utilizing a nanopipette adapted for use in an electrochemical sensing circuit. The nanopipette may be functionalized on its interior bore with metal chelators for binding and sensing metal ions or other specific binding molecules such as boronic acid for binding and sensing glucose. Such a functionalized nanopipette is comprised in an electrical sensor that detects when the nanopipette selectively and reversibly binds ions or small molecules. Also disclosed is a nanoreactor, comprising a nanopipette, for controlling precipitation in aqueous solutions by voltage-directed ion migration, wherein ions may be directed out of the interior bore by a repulsing charge in the bore

    Morphology and Light‐Dependent Spatial Distribution of Spin Defects in Carbon Nitride

    Get PDF
    Carbon nitride (CN) is a heterogeneous photocatalyst that combines good structural properties and a broad scope. The photocatalytic efficiency of CN is associated with the presence of defective and radical species. An accurate description of defective states—both at a local and extended level—is key to develop a thorough mechanistic understanding of the photophysics of CN. In turn, this will maximise the generation and usage of photogenerated charge carriers and minimise wasteful charge recombination. Here the influence of morphology and light-excitation on the number and chemical nature of radical defects is assessed. By exploiting the magnetic dipole-dipole coupling, the spatial distribution of native radicals in CN is derived with high precision. From the analysis an average distance in the range 1.99–2.34 nm is determined, which corresponds to pairs of radicals located approximately four tri-s-triazine units apart

    Singlet-Triplet Energy Inversion in Carbon Nitride Photocatalysts

    Get PDF
    Time-resolved EPR (TR-EPR) demonstrates the formation of well-defined spin triplet excitons in carbon nitride. This permits to experimentally probe the extent of the triplet wavefunction which delocalizes over several tri-s-triazine units. Analysis of the temperature dependence of the TR-EPR signal reveals the mobility of the triplet excitons. By employing monochromatic light excitation in the range 430-600 nm, the energy of the spin triplet is estimated to be ≈0.2 eV above the conduction band edge, proving that the triplet exciton lies above the corresponding singlet. Comparison between amorphous and graphitic forms establishes the singlet-triplet inversion as a general feature of carbon nitride materials
    • 

    corecore