462 research outputs found

    Modal Test and Analysis of the NASA Tiltrotor Test Rig

    Get PDF
    The Tiltrotor Test Rig (TTR) is being developed at the NASA Ames Research Center for testing full-scaleproprotors in the National Full-scale Aerodynamics Complex (NFAC) wind tunnel. The TTR is currentlyundergoing checkout testing to ensure its proper functionality. Part of the checkout process is a groundvibration test, or shake test, to characterize the modal characteristics of the test rig once it is installed in the wind tunnel. This paper presents a summary of the shake test procedure and an overview of the test results. The results include frequency response functions for a number of different test configurations as well as visualizations of the major mode shapes. Excitation methods included random and swept sine shaking as well as hammer impacts. At the conclusion of this paper, some recommendations are given for future shake tests

    High-Speed Wind Tunnel Tests of a Full-Scale Proprotor on the Tiltrotor Test Rig

    Get PDF
    The Tiltrotor Test Rig (TTR) is a NASA project, joint with the U.S. Army and Air Force, to develop a new, large scale proprotor test system for the National Full-Scale Aerodynamics Complex (NFAC). The first wind-tunnel entry was completed in November 2018 with a modern, 26-ft diameter proprotor. The primary purpose was to complete the development of the TTR, including systems integration with the NFAC. The TTR and rotor were tested up to 273 knots in axial flow. This is the highest airspeed ever achieved by a full-scale proprotor in any wind tunnel. Extensive conversion-mode data were also acquired, and hover/climb conditions were explored. Additional testing included aerodynamic tares, motor tests, thermal tests, modal vibration tests, and other checkout activities. This paper summarizes the results of the test, including examples of the most significant data

    Excitation Versus Emission Spectra as a Means to Examine Selective Fluorescence Quenching Agents

    Get PDF
    To ascertain whether fuorescence quenching is best studied with the use of excitation or emission spectra, and to expand our existing PAH spectral data file, we have recorded excitation spectra of benzo [b

    Exploring Advanced Technology Gas Turbine Engine Design and Performance for the Large Civil Tiltrotor (LCTR)

    Get PDF
    A Large Civil Tiltrotor (LCTR) conceptual design was developed as part of the NASA Heavy Lift Rotorcraft Systems Investigation in order to establish a consistent basis for evaluating the benefits of advanced technology for large tiltrotors. The concept has since evolved into the second-generation LCTR2, designed to carry 90 passengers for 1,000 nautical miles at 300 knots, with vertical takeoff and landing capability. This paper explores gas turbine component performance and cycle parameters to quantify performance gains possible for additional improvements in component and material performance beyond those identified in previous LCTR2 propulsion studies and to identify additional research areas. The vehicle-level characteristics from this advanced technology generation 2 propulsion architecture will help set performance levels as additional propulsion and power systems are conceived to meet ever-increasing requirements for mobility and comfort, while reducing energy use, cost, noise and emissions. The Large Civil Tiltrotor vehicle and mission will be discussed as a starting point for this effort. A few, relevant engine and component technology studies, including previous LCTR2 engine study results will be summarized to help orient the reader on gas turbine engine architecture, performance and limitations. Study assumptions and methodology used to explore engine design and performance, as well as assess vehicle sizing and mission performance will then be discussed. Individual performance for present and advanced engines, as well as engine performance effects on overall vehicle size and mission fuel usage, will be given. All results will be summarized to facilitate understanding the importance and interaction of various component and system performance on overall vehicle characteristics
    • …
    corecore