47 research outputs found

    MobilitĂ  delle specie mercurifere in condizioni naturali e perturbate in ambiente lagunare

    Get PDF
    2010/2011L’areale marino costiero del Friuli Venezia Giulia, posto nel settore più orientale del Nord Adriatico, è conosciuto come uno degli ecosistemi maggiormente contaminati dal mercurio (Hg), metallo pesante il cui notevole interesse è legato alla spiccata neuro-tossicità della sua forma organica, il metilmercurio (MeHg), e alle sue proprietà di bioaccumulo e biomagnificazione lungo l’intera catena trofica fino all’uomo (Fitzgerald & Clarkson, 1991; Clarkson, 1999). La fonte principale di Hg è dovuta agli apporti di materiale particellato veicolati nel Golfo di Trieste dal Fiume Isonzo. Quest’ultimo riceve nel suo percorso il risultato del dilavamento cui sono soggetti i terreni e le sponde fluviali dell’area di Idrjia (Slovenia occidentale) da parte di un suo affluente, il torrente Idrijca. In questo sito, per un periodo di circa 500 anni, è stata condotta una intensa attività estrattiva che si è protratta fino alla definitiva chiusura dell’impianto avvenuta nel 1996. E’ stato stimato che circa cinque milioni di tonnellate di roccia mineralizzata a Hg, essenzialmente cinabro (HgS), e, in misura minore, Hg nativo, siano state scavate e che solo una percentuale pari al 73% del Hg ad esse associato (105.000 t) sia stato recuperato (Gosar et al., 1997). Il rimanente è stato dissipato nell’ambiente a causa della scarsa efficienza dei processi di arrostimento del minerale: in conseguenza alle ricadute umide, i terreni circostanti, le sponde e i sedimenti del torrente Idrijca sono stati fortemente contaminati. L’influenza del Hg proveniente dal distretto minerario si è estesa all’intero Golfo di Trieste ma anche all’adiacente Laguna di Marano e Grado. A livello della Laguna, nel periodo compreso tra il 1949 e il 1984, si è sommato un ulteriore apporto dovuto allo scarico incontrollato di reflui contenenti Hg, utilizzato come catalizzatore, nell’impianto cloro-soda sito nella zona industriale di Torviscosa (Daris et al., 1993). Nella Laguna di Marano e Grado la contaminazione è stata accertata sia nei sedimenti sia lungo l’intera catena trofica (Mattassi et al., 1991; Brambati, 1997, 2001) ponendo così seri quesiti sul comportamento (ciclo biogeochimico, trasformazione, bioaccumulo e biomagnificazione) di questo metallo in un ecosistema dove coesistono importanti attività economiche per la popolazione ivi residente (pesca, acquacoltura, venericoltura e turismo). In particolare, come riportato in Sladonja et al. (2011), a partire dagli anni ’80, è stata introdotta in laguna la vongola filippina (Tapes philippinarum), che ha colonizzato quasi tutto l’areale risalendo il cuneo salino dei sistemi fluviali per circa 4-5 km. L’attività di raccolta e commercializzazione del bivalve rappresenta una notevole risorsa a supporto dell'economia delle popolazioni locali, tuttavia è fortemente subordinata alle condizioni ambientali e sanitarie dell’ambiente derivanti dalla condizioni chimico-fisiche dei suoi fondali. In questo contesto, a partire dal mese di Giugno 2008, è stato avviato un progetto di ricerca a carattere multidisciplinare denominato “MIRACLE” (Mercury Interdisciplinary Research for Appropriate Clam farming in Lagoon Environment), coordinato dal Dipartimento di Geoscienze dell'Università di Trieste (responsabile scientifico dott. Stefano Covelli) e finanziato dal Commissario Delegato per l’emergenza Socio-Economico Ambientale determinatasi nella laguna di Marano Lagunare e Grado. Il progetto ha visto il coinvolgimento di numerose unità operative istituzionali e scientifiche a livello nazionale (ARPA FVG, OGS-BIO, ISPRA, Università di Venezia) e internazionale (Istituto “Jožef Stefan" di Lubiana, Stazione di Biologia Marina di Pirano, University of Massachusetts-Lowell). Lo scopo finale era l’individuazione di nuove aree idonee da destinarsi alla venericoltura tenendo conto della diffusa contaminazione da Hg a livello dell’intera area lagunare. In virtù del ruolo centrale svolto nei cicli biogeochimici dell’ambiente marino, una particolare attenzione è stata posta alla caratterizzazione e al comportamento dei sedimenti. I risultati della ricerca approfondita su questa matrice costituiscono l’oggetto della presente dissertazione. L’attività di ricerca ha previsto una intensa fase di campionamento condotta a livello dell’intera Laguna seguita da una parte sperimentale di laboratorio che ha fatto luce su diversi aspetti biogeochimici del Hg. La distribuzione spaziale del metallo nei sedimenti superficiali è stata aggiornata prendendo in esame anche la forma metilata della quale non erano a disposizione dati pregressi a livello di intero areale. Le due forme mercurifere sono state correlate con i principali descrittori geochimici (granulometria, contenuto e qualità della sostanza organica) ponendo una particolare attenzione alle implicazioni che derivano dalla speciazione chimica del metallo tra le forme biodisponibili e refrattarie ai fenomeni di rimobilizzazione. L’indagine è stata successivamente estesa anche ai sedimenti sub-superficiali allo scopo di determinare lo spessore interessato dalla contaminazione. Sulla base dei tassi di sedimentazione, calcolati per la prima volta in laguna, è stata valutata l’evoluzione storica dell’accumulo di Hg, estrapolato l’inventario a livello dell’intero bacino lagunare e considerata la possibile evoluzione della contaminazione. Nella seconda fase della ricerca, sulla base delle possibili destinazioni d’uso del sistema lagunare e i fenomeni fisici a esse associato, sono state prese in esame le dinamiche delle specie mercurifere in colonna d’acqua a seguito di fenomeni di risospensione. Questa seconda parte delle attività è stata svolta allestendo esperimenti in condizioni controllate di laboratorio (mesocosmo) su sedimenti prelevati in due siti scelti laddove le operazioni di dragaggio, necessarie per consentire l’operosità dei canali, vengono eseguite periodicamente.XXIII Ciclo196

    Special Issue on Contaminants in Coastal Environments: From the Sediment-Water Interface to the Trophic Chain

    Get PDF
    Rapid industrialization and urbanization have led to a decline in environmental quality, especially in coastal aquatic environments (i.e., lakes, estuaries, lagoons, bays, and harbors), which are subjected to several various form of pressure (i.e., industrial, agricultural and sewage effluents, shipping, oil spills, nutrient inputs in rivers and atmospheric depositions). In these environments, sediments represent the final sink and the potential secondary sources, for the water column and biota, of several contaminants. Thus, potential toxic elements (PTEs), nutrients, persistent organic pollutants (POPs), and contaminants of emerging concern (CECs) harm aquatic life, endanger human health, and often require expensive mitigation procedures. The solutions to prevent and to mitigate the harmful effects of contaminants upon the aquatic environments cannot ignore relevant investigations, the transport and mobility of contaminants and their interactions with sediments, the water column and biota. This Special Issue is aimed at examining both the local and large-scale effect interactions and management of potential contaminants in the coastal aquatic environment. Five research articles and one review article were collected which report on various approaches used to assess the bioavailability, fate, and transport of contaminants, along with the risk assessment and management of the contaminated material from various anthropogenic sources

    Gaseous Mercury Exchange from Water-Air Interface in Differently Impacted Freshwater Environments

    Get PDF
    Gaseous exchanges of mercury (Hg) at the water-air interface in contaminated sites strongly influence its fate in the environment. In this study, diurnal gaseous Hg exchanges were seasonally evaluated by means of a floating flux chamber in two freshwater environments impacted by anthropogenic sources of Hg, specifically historical mining activity (Solkan Reservoir, Slovenia) and the chlor-alkali industry (Torviscosa dockyard, Italy), and in a pristine site, Cavazzo Lake (Italy). The highest fluxes (21.88 ± 11.55 ng m-2 h-1) were observed at Solkan, coupled with high dissolved gaseous mercury (DGM) and dissolved Hg (THgD) concentrations. Conversely, low vertical mixing and saltwater intrusion at Torviscosa limited Hg mobility through the water column, with higher Hg concentrations in the deep layer near the contaminated sediments. Consequently, both DGM and THgD in surface water were generally lower at Torviscosa than at Solkan, resulting in lower fluxes (19.01 ± 12.65 ng m-2 h-1). However, at this site, evasion may also be limited by high atmospheric Hg levels related to dispersion of emissions from the nearby chlor-alkali plant. Surprisingly, comparable fluxes (15.56 ± 12.78 ng m-2 h-1) and Hg levels in water were observed at Cavazzo, suggesting a previously unidentified Hg input (atmospheric depositions or local geology). Overall, at all sites the fluxes were higher in the summer and correlated to incident UV radiation and water temperature due to enhanced photo production and diffusivity of DGM, the concentrations of which roughly followed the same seasonal trend

    Benthic nutrient cycling at the sediment-water interface in a lagoon fish farming system (northern Adriatic Sea, Italy)

    Get PDF
    Metabolism and carbon, oxygen, and nutrient fluxes (DIC, DOC, DO2, NO2 12, NO3 12, NH4+, PO4 3 12 and SiO4 4 12) were studied during three surveys at two sites (VN1 and VN3) located at a fish farm at theMarano and Grado Lagoon (northern Adriatic Sea), using an in situ benthic chamber. Field experimentswere conducted in July and October 2015 and March 2016 at a depth of approximately 2 m along the main channels of the fish farm.Water samples were collected by a scuba diver every 2 h in order to investigate daily fluxes of solutes across the sediment-water interface (SWI). Regarding the solid phase, Corg/Ntot and Corg/Porg molar ratios suggested an autochthonous marine origin of the organic matter and a minor preservation of P in the sediments, respectively; high values of sulphur (Stot) were also encountered (0.8\u20132%). The conditions at VN3 were mostly anoxic with high NH4 + levels (30\u20131027 \u3bcM) and the absence of NO3 12. Substantial daily patterns of all solutes occurred especially in autumn andwinter. On the contrary, fluxes at VN1were less pronounced. Usually, inverse correlations appeared between dissolved O2 and DIC trends, but in our systemthis was observed only at VN3 in autumn and accomplished by a parallel increase in NH4+, PO4 3 12 and SiO4 4 12 during intense nutrient regeneration. These results are significantly different than those reported for open lagoon environments,where nutrient regeneration at the SWI and in surface sediments is the primary source of nutrients available for assimilation processes, especially during the warmer period of the year when the natural nutrient input by fresh water inflows is limited. Due to the importance of this site for aquaculture, biodiversity and ecosystem services, useful suggestions have been provided from this study in order to improve the quality of this unique aquatic system

    Importance of a tidal flat-saltmarsh system as a source-sink of mercury in a contaminated coastal lagoon environment (northern Adriatic Sea)

    Get PDF
    Saltmarshes are important constituents of marine-coastal transitional environments that provide several services to the ecosystem. Due to anthropogenic activities, several contaminants are increasingly introduced into these environments where are disperse and can accumulate in the saltmarsh sediments. The Marano and Grado Lagoon (northern Adriatic Sea) is affected by Hg contamination, which mainly coming from historical regional mining activities (Idrija, western Slovenia) and, subordinately, from more recent industrial input due to a chlor-alkali plant. Several studies have also demonstrated the Hg contamination of saltmarsh sediments and halophyte vegetation that cover them. Moreover, saltmarshes not only trap contaminated sediments, but can act as a secondary source of contamination. This work aims at determining the potential role of the tidal flat-saltmarsh (TF-S) system as a sink or secondary source of Hg in this coastal lagoon in relation to the chemical-physical processes leading their remobilisation. The main objective was to understand the role played by periodic flow of tide in a TF-S pilot site in terms of transport, accumulation and release of Hg. Tidal flows and water chemistry were measured at the mouth of a principal tidal creek which collect the waters of a dense channel network draining a 5.5-ha tidal flat-saltmarsh system. Tidal fluxes were estimated by combining discrete hourly tidal flow measurements with weighted measurements of particulate (PHg) and dissolved (DHg) mercury obtained by water samples. The highest values of DHg and PHg were recorded during ebb tide and the quantitative fluxes estimated for all parameters highlighted a tendency for metal to be exported from the TF-S system due to the tidal flows in ebb tide conditions. The results obtained for the PHg fluxes, in particular, are in agreement with those observed on a macro-scale at one of the lagoon tidal inlets considering an annual mass-balance of PHg performed via several water column sampling campaigns. A simple estimation provides a negative sedimentary budget for the TF-S system, which loses PHg towards the main lagoon channel during a tidal semi-cycle thus confirming other evidence of serious morphological deterioration of this critical coastal environment

    Special Issue on Potentially Toxic Trace Elements in Contaminated Sites: Fate, Risk and Remediation

    No full text
    The occurrence of potentially toxic elements (PTEs, including As, Cd, Hg and Pb) of both anthropogenic and natural origin in the environment represents an issue of global concern, leading to a general decline in environmental quality in both continental and aquatic systems [...

    Occurrence and speciation of arsenic and mercury in alluvial and coastal sediments

    No full text
    Among potential toxic elements (PTEs), arsenic (As) and mercury (Hg) are well known for the toxicity of their different chemical species and diffusion in the environment via several anthropic sources (i.e., industrial settlements, mining activity). Bottom sediments often become a repository for As and Hg, although they may be considered a potential secondary source of these elements into the water column depending on their speciation and mobility. Focusing on the most recent studies (since 2019) on the occurrence of As and Hg in contaminated aquatic sediments, the aim of this review is to give an overview of the current understandings on the complex biogeochemical cycle of these elements in this environmental media. The main biogeochemical factors governing the transformations of As and Hg among their different chemical species were synthesized, highlighting those driving the formation of more mobile and/or bioavailable forms. Additionally, the most advanced analytical techniques for the determination of the different chemical species of As and Hg in sediments are briefly presented

    Special Issue on Contaminants in Coastal Environments: From the Sediment-Water Interface to the Trophic Chain

    No full text
    Rapid industrialization and urbanization have led to a decline in environmental quality, especially in coastal aquatic environments (i [...

    Spatial Distribution and Biomonitoring of Atmospheric Mercury Concentrations over a Contaminated Coastal Lagoon (Northern Adriatic, Italy)

    Get PDF
    The Marano and Grado Lagoon (Northern Adriatic Sea) has been affected by mercury (Hg) contamination coming from two sources, mining activity and discharges from a chlor-alkali plant (CAP). Sediments and water contamination have been previously well characterised, but little is known about the atmospheric compartment, where Hg is easily emitted and can persist for a long time as gaseous elemental mercury (GEM). In this work, atmospheric GEM levels and its spatial distribution over the lagoon were monitored at several sites by means of both continuous discrete instrumental measurements over several months and determination of Hg bioaccumulated in lichens (Xanthoria parietina L.). Average GEM levels varied from 1.80\ub10.74 to 3.04\ub10.66 ng m-3, whereas Hg in lichens ranged between 0.06 to 0.40 mg kg-1. In both cases, the highest values were found downwind of the CAP, but excluding this point, spatial patterns of Hg in the atmosphere and lichens reflected the concentration of this metal in the sediments of the lagoon, showing a decrease moving westward. These results could indicate that the lagoon acts as a secondary source of Hg into the atmosphere: future work is needed to characterise the quantity of releases and depositions at different environments inside the lagoon
    corecore