5,004 research outputs found

    Contour spectrograms for POGO analysis

    Get PDF
    Contour spectrograms for POGO analysis in Saturn S-2 and S-4b stage

    Deletion of EP4 in S100a4-lineage cells reduces scar tissue formation during early but not later stages of tendon healing

    Get PDF
    AbstractTendon injuries heal via scar tissue rather than regeneration. This healing response forms adhesions between the flexor tendons in the hand and surrounding tissues, resulting in impaired range of motion and hand function. Mechanistically, inflammation has been strongly linked to adhesion formation, and Prostaglandin E2 (PGE2) is associated with both adhesion formation and tendinopathy. In the present study we tested the hypothesis that deletion of the PGE2 receptor EP4 in S100a4-lineage cells would decrease adhesion formation. S100a4-Cre; EP4flox/flox (EP4cKOS100a4) repairs healed with improved gliding function at day 14, followed by impaired gliding at day 28, relative to wild type. Interestingly, EP4cKOS100a4 resulted in only transient deletion of EP4, suggesting up-regulation of EP4 in an alternative cell population in these mice. Loss of EP4 in Scleraxis-lineage cells did not alter gliding function, suggesting that Scx-lineage cells are not the predominant EP4 expressing population. In contrast, a dramatic increase in α-SMA+, EP4+ double-positive cells were observed in EP4cKOS100a4 suggesting that EP4cKOS100a4 repairs heal with increased infiltration of EP4 expressing α-SMA myofibroblasts, identifying a potential mechanism of late up-regulation of EP4 and impaired gliding function in EP4cKOS100a4 tendon repairs.</jats:p

    Ultra high temperature ceramic composite materials

    Get PDF
    Ultra-high temperature ceramics (UHTCs) are materials that have been demonstrated to withstand temperatures up to around 3000°C, thermal fluxes of ~17 MWm-2 and gas velocities of around Mach 0.6. Thus, they offer potential for use in applications such as leading edges and engine parts for hypervelocity vehicles. Under the Domain 8 of the MCM-ITP (Materials and Components for Missiles – Innovation and Technology Partnership) programme, research has been carried out investigating UHTC composites consisting of carbon fibre (Cf) preforms impregnated with HfB2 powders. Whilst the initial impregnation route resulted in preforms with high and uniform powder loadings, this was not true for large samples. As a result, the mechanical properties showed a high degree of scatter. Nevertheless, samples with higher final densities showed higher strengths. Thus a new impregnation route has been developed that results in both higher and more homogeneous powder loading. This has led to higher strengths and even greater temperature and ablation resistance with the only penalty being an increase in component mass. A prototype jet vane has been successfully produced

    Aerosol single-scattering albedo and asymmetry parameter from MFRSR observations during the ARM Aerosol IOP 2003

    Get PDF
    International audienceMulti-filter Rotating Shadowband Radiometers (MFRSRs) provide routine measurements of the aerosol optical depth (?) at six wavelengths (0.415, 0.5, 0.615, 0.673, 0.870 and 0.94 ?m). The single-scattering albedo (?0) is typically estimated from the MFRSR measurements by assuming the asymmetry parameter (g). In most instances, however, it is not easy to set an appropriate value of g due to its strong temporal and spatial variability. Here, we introduce and validate an updated version of our retrieval technique that allows one to estimate simultaneously ?0 and g for different types of aerosol. We use the aerosol and radiative properties obtained during the Atmospheric Radiation Measurement (ARM) Program's Aerosol Intensive Operational Period (IOP) to validate our retrieval in two ways. First, the MFRSR-retrieved optical properties are compared with those obtained from independent surface, Aerosol Robotic Network (AERONET), and aircraft measurements. The MFRSR-retrieved optical properties are in reasonable agreement with these independent measurements. Second, we perform radiative closure experiments using the MFRSR-retrieved optical properties. The calculated broadband values of the direct and diffuse fluxes are comparable (~5 W/m2) to those obtained from measurements

    Comparisons of downwelling radiation to model predictions based on groundbased measurements during FIRE 1991

    Get PDF
    Surface radiation measurements and simultaneous ground-based measurements of the atmosphere during the FIRE'91 cirrus field experiment provided an opportunity to identify crucial measurements and parameterization deficiencies in current cloud-radiation models. Comparisons between measured and calculated broadband surface fluxes with only a small data subset already reveal these needs: accurate humidity and aerosol vertical profiles for clear cases, accurate vertical extinction profiles and dimensions for clouds, and understanding of the (solar) scattering properties of cirrus

    Beyond Outerplanarity

    Full text link
    We study straight-line drawings of graphs where the vertices are placed in convex position in the plane, i.e., convex drawings. We consider two families of graph classes with nice convex drawings: outer kk-planar graphs, where each edge is crossed by at most kk other edges; and, outer kk-quasi-planar graphs where no kk edges can mutually cross. We show that the outer kk-planar graphs are (⌊4k+1⌋+1)(\lfloor\sqrt{4k+1}\rfloor+1)-degenerate, and consequently that every outer kk-planar graph can be (⌊4k+1⌋+2)(\lfloor\sqrt{4k+1}\rfloor+2)-colored, and this bound is tight. We further show that every outer kk-planar graph has a balanced separator of size O(k)O(k). This implies that every outer kk-planar graph has treewidth O(k)O(k). For fixed kk, these small balanced separators allow us to obtain a simple quasi-polynomial time algorithm to test whether a given graph is outer kk-planar, i.e., none of these recognition problems are NP-complete unless ETH fails. For the outer kk-quasi-planar graphs we prove that, unlike other beyond-planar graph classes, every edge-maximal nn-vertex outer kk-quasi planar graph has the same number of edges, namely 2(k−1)n−(2k−12)2(k-1)n - \binom{2k-1}{2}. We also construct planar 3-trees that are not outer 33-quasi-planar. Finally, we restrict outer kk-planar and outer kk-quasi-planar drawings to \emph{closed} drawings, where the vertex sequence on the boundary is a cycle in the graph. For each kk, we express closed outer kk-planarity and \emph{closed outer kk-quasi-planarity} in extended monadic second-order logic. Thus, closed outer kk-planarity is linear-time testable by Courcelle's Theorem.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    SPARTICUS: Small Particles in Cirrus Science and Operations Plan

    Full text link
    From a mass-weighted perspective, cirrus clouds exert an enormous influence on the radiative energy budget of the earth?s climate system. Owing to their location in the cold upper troposphere, cirrus can significantly reduce the outgoing longwave radiation while, at the same time, remaining relatively transmissive to solar energy. Thus, cirrus clouds are the only cloud genre that can exert a direct radiative warming influence on the climate system (Ackerman et al. 1988). It is not surprising, therefore, that general circulation models (GCMs) are especially sensitive to the presence of cirrus in the model atmosphere. Lohmann and Roeckner (1995), for instance, show that the climate sensitivity can vary by as much as 40% due to the properties of cirrus varying between transparent and opaque limits. Lohmann and Roeckner (1995) also identify a key feedback by cirrus that is often overlooked; on longer time scales cloud heating in the upper troposphere can act to maintain and modulate the general circulation of the atmosphere through accelerating the subtropical and polar jet streams. Understanding these mechanisms and representing them in models is complicated by the fact that cirrus properties vary over an enormous dynamic range compared to most other clouds

    Aerosol Data Sources and Their Roles within PARAGON

    Get PDF
    We briefly but systematically review major sources of aerosol data, emphasizing suites of measurements that seem most likely to contribute to assessments of global aerosol climate forcing. The strengths and limitations of existing satellite, surface, and aircraft remote sensing systems are described, along with those of direct sampling networks and ship-based stations. It is evident that an enormous number of aerosol-related observations have been made, on a wide range of spatial and temporal sampling scales, and that many of the key gaps in this collection of data could be filled by technologies that either exist or are expected to be available in the near future. Emphasis must be given to combining remote sensing and in situ active and passive observations and integrating them with aerosol chemical transport models, in order to create a more complete environmental picture, having sufficient detail to address current climate forcing questions. The Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON) initiative would provide an organizational framework to meet this goal
    • …
    corecore