6 research outputs found

    X-ray evidence of a native state with increased compactness populated by tryptophan-less B. licheniformis β-lactamase

    Get PDF
    β-lactamases confer antibiotic resistance, one of the most serious world-wide health problems, and are an excellent theoretical and experimental model in the study of protein structure, dynamics and evolution. Bacillus licheniformis exo-small penicillinase (ESP) is a Class-A β-lactamase with three tryptophan residues located in the protein core. Here, we report the 1.7-Å resolution X-ray structure, catalytic parameters, and thermodynamic stability of ESPΔW, an engineered mutant of ESP in which phenylalanine replaces the wild-type tryptophan residues. The structure revealed no qualitative conformational changes compared with thirteen previously reported structures of B. licheniformis β-lactamases (RMSD = 0.4-1.2 Å). However, a closer scrutiny showed that the mutations result in an overall more compact structure, with most atoms shifted toward the geometric center of the molecule. Thus, ESPΔW has a significantly smaller radius of gyration (Rg) than the other B. licheniformis β-lactamases characterized so far. Indeed, ESPΔW has the smallest Rg among 126 Class-A β-lactamases in the Protein Data Bank (PDB). Other measures of compactness, like the number of atoms in fixed volumes and the number and average of noncovalent distances, confirmed the effect. ESPΔW proves that the compactness of the native state can be enhanced by protein engineering and establishes a new lower limit to the compactness of the Class-A β-lactamase fold. As the condensation achieved by the native state is a paramount notion in protein folding, this result may contribute to a better understanding of how the sequence determines the conformational variability and thermodynamic stability of a given fold.Fil: Risso, Valeria Alejandra. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Multidisciplinario de Biología Celular. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Multidisciplinario de Biología Celular. Universidad Nacional de La Plata. Instituto Multidisciplinario de Biología Celular; ArgentinaFil: Acierno, Juan Pablo. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Multidisciplinario de Biología Celular. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Multidisciplinario de Biología Celular. Universidad Nacional de La Plata. Instituto Multidisciplinario de Biología Celular; ArgentinaFil: Capaldi, Stefano. Universita di Verona; ItaliaFil: Monaco, Hugo L.. Universita di Verona; ItaliaFil: Ermacora, Mario Roberto. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Multidisciplinario de Biología Celular. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Multidisciplinario de Biología Celular. Universidad Nacional de La Plata. Instituto Multidisciplinario de Biología Celular; Argentin

    The crystal structure of sterol carrier protein 2 from Yarrowia lipolytica and the evolutionary conservation of a large, non-specific lipid-binding cavity

    Get PDF
    Sterol carrier protein 2 (SCP2), a small intracellular domain present in all forms of life, binds with high affinity a broad spectrum of lipids. Due to its involvement in the metabolism of long-chain fatty acids and cholesterol uptake, it has been the focus of intense research in mammals and insects; much less characterized are SCP2 from other eukaryotic cells and microorganisms. We report here the X-ray structure of Yarrowia lipolytica SCP2 (YLSCP2) at 2.2 Å resolution in complex with palmitic acid. This is the first fungal SCP2 structure solved, and it consists of the canonical five-stranded β-sheet covered on the internal face by a layer of five α-helices. The overall fold is conserved among the SCP2 family, however, YLSCP2 is most similar to the SCP2 domain of human MFE-2, a bifunctional enzyme acting on peroxisomal β-oxidation. We have identified the common structural elements defining the shape and volume of the large binding cavity in all species characterized. Moreover, we found that the cavity of the SCP2 domains is distinctly formed by carbon atoms, containing neither organized water nor rigid polar interactions with the ligand. These features are in contrast with those of fatty acid binding proteins, whose internal cavities are more polar and contain bound water. The results will help to design experiments to unveil the SCP2 function in very different cellular contexts and metabolic conditions.Fil: Pérez de Berti, Federico Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto Multidisciplinario de Biología Celular (i); Argentina. Universidad Nacional de Quilmes; ArgentinaFil: Capaldi, Stefano. Universita Di Verona; ItaliaFil: Ferreyra, Raul Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto Multidisciplinario de Biología Celular (i); Argentina. Universidad Nacional de Quilmes; ArgentinaFil: Burgardt, Noelia Ines. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Acierno, Juan Pablo. Universidad Nacional de Quilmes; ArgentinaFil: Klinke, Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Monaco, Hugo L.. Universita Di Verona; ItaliaFil: Ermacora, Mario Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto Multidisciplinario de Biología Celular (i); Argentina. Universidad Nacional de Quilmes; Argentin

    Second GHEP-ISFG exercise for DVI: “DNA-led” victims’ identification in a simulated air crash

    Get PDF
    The Spanish and Portuguese-Speaking Working Group of the International Society for Forensic Genetics (GHEP-ISFG) has organized a second collaborative exercise on a simulated case of Disaster Victim Identification (DVI), with the participation of eighteen laboratories. The exercise focused on the analysis of a simulated plane crash case of medium-size resulting in 66 victims with varying degrees of fragmentation of the bodies (with commingled remains). As an additional difficulty, this second exercise included 21 related victims belonging to 6 families among the 66 missings to be identified. A total number of 228 post-mortem samples were represented with aSTR and mtDNA profiles, with a proportion of partial aSTR profiles simulating charred remains. To perform the exercise, participants were provided with aSTR and mtDNA data of 51 reference pedigrees —some of which deficient—including 128 donors for identification purposes. The exercise consisted firstly in the comparison of the post-mortem genetic profiles in order to re-associate fragmented remains to the same individual and secondly in the identification of the re-associated remains by comparing aSTR and mtDNA profiles with reference pedigrees using pre-established thresholds to report a positive identification. Regarding the results of the post-mortem samples re-associations, only a small number of discrepancies among participants were detected, all of which were from just a few labs. However, in the identification process by kinship analysis with family references, there were more discrepancies in comparison to the correct results. The identification results of single victims yielded fewer problems than the identification of multiple related victims within the same family groups. Several reasons for the discrepant results were detected: a) the identity/non-identity hypotheses were sometimes wrongly expressed in the likelihood ratio calculations, b) some laboratories failed to use all family references to report the DNA match, c) In families with several related victims, some laboratories firstly identified some victims and then unnecessarily used their genetic information to identify the remaining victims within the family, d) some laboratories did not correctly use “prior odds” values for the Bayesian treatment of the episode for both post-mortem/post-mortem re-associations as well as the ante-mortem/post-mortem comparisons to evaluate the probability of identity. For some of the above reasons, certain laboratories failed to identify some victims. This simulated “DNA-led” identification exercise may help forensic genetic laboratories to gain experience and expertize for DVI or MPI in using genetic data and comparing their own results with the ones in this collaborative exercise.This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.Peer reviewe

    Ultracompact states of native proteins

    No full text
    A statistical analysis of circa 20,000 X-ray structures evidenced the effects of temperature of data collection on protein intramolecular distances and degree of compaction. Identical chains with data collected at cryogenic ultralow temperatures (≤160 K) showed a radius of gyration (Rg) significantly smaller than at moderate temperatures (≥240 K). Furthermore, the analysis revealed the existence of structures with a Rg significantly smaller than expected for cryogenic temperatures. In these ultracompact cases, the unusually small Rg could not be specifically attributed to any experimental parameter or crystal features. Ultracompaction involves most atoms and results in their displacement toward the center of the molecule. Ultracompact structures on average have significantly shorter van der Waals and hydrogen bonds than expected for ultralow temperature structures. In addition, the number of van der Waals contacts was larger in ultracompact than in ultralow temperature structures. The structure of these ultracompact states was analyzed in detail and the implication and possible causes of the phenomenon are discussed.Fil: Grille Coronel, Leandro. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; ArgentinaFil: Acierno, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Multidisciplinario de Biología Celular. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Multidisciplinario de Biología Celular. Universidad Nacional de La Plata. Instituto Multidisciplinario de Biología Celular; ArgentinaFil: Ermacora, Mario Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Multidisciplinario de Biología Celular. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Multidisciplinario de Biología Celular. Universidad Nacional de La Plata. Instituto Multidisciplinario de Biología Celular; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentin

    Affinity Maturation Increases the Stability and Plasticity of the Fv Domain of Anti-protein Antibodies

    Get PDF
    The somatic mutations accumulated in variable and framework regions of antibodies produce structural changes that increase the affinity towards the antigen. This implies conformational and non covalent bonding changes at the paratope, as well as possible quaternary structure changes and rearrangements at the VH–VL interface. The consequences of the affinity maturation on the stability of the Fv domain were studied in a system composed of two closely related antibodies, F10.6.6 and D44.1, which recognize the same hen egg-white lysozyme (HEL) epitope. The mAb F10.6.6 has an affinity constant 700 times higher than D44.1, due to a higher surface complementarity to HEL. The structure of the free form of the Fab F10.6.6 presented here allows a comparative study of the conformational changes produced upon binding to antigen. By means of structural comparison, kinetics and thermodynamics of binding and stability studies on Fab and Fv fragments of both antibodies, we have determined that the affinity maturation process of anti-protein antibodies affects the shape of the combining site and the secondary structure content of the variable domain, stabilizes the VH–VL interaction, and consequently produces an increase of the Fv domain stability, improving the binding to antigen.Fil: Acierno, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Braden, Bradford C.. Bowie State University; Estados UnidosFil: Klinke, Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Goldbaum, Fernando Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Cauerff, Ana Albina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentin

    The crystal structure of sterol carrier protein 2 from Yarrowia lipolytica and the evolutionary conservation of a large, non-specific lipid-binding cavity

    Get PDF
    Sterol carrier protein 2 (SCP2), a small intracellular domain present in all forms of life, binds with high affinity a broad spectrum of lipids. Due to its involvement in the metabolism of long-chain fatty acids and cholesterol uptake, it has been the focus of intense research in mammals and insects; much less characterized are SCP2 from other eukaryotic cells and microorganisms. We report here the X-ray structure of Yarrowia lipolytica SCP2 (YLSCP2) at 2.2 Å resolution in complex with palmitic acid. This is the first fungal SCP2 structure solved, and it consists of the canonical five-stranded β-sheet covered on the internal face by a layer of five α-helices. The overall fold is conserved among the SCP2 family, however, YLSCP2 is most similar to the SCP2 domain of human MFE-2, a bifunctional enzyme acting on peroxisomal β-oxidation. We have identified the common structural elements defining the shape and volume of the large binding cavity in all species characterized. Moreover, we found that the cavity of the SCP2 domains is distinctly formed by carbon atoms, containing neither organized water nor rigid polar interactions with the ligand. These features are in contrast with those of fatty acid binding proteins, whose internal cavities are more polar and contain bound water. The results will help to design experiments to unveil the SCP2 function in very different cellular contexts and metabolic conditions.Fil: Pérez de Berti, Federico Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto Multidisciplinario de Biología Celular (i); Argentina. Universidad Nacional de Quilmes; ArgentinaFil: Capaldi, Stefano. Universita Di Verona; ItaliaFil: Ferreyra, Raul Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto Multidisciplinario de Biología Celular (i); Argentina. Universidad Nacional de Quilmes; ArgentinaFil: Burgardt, Noelia Ines. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Acierno, Juan Pablo. Universidad Nacional de Quilmes; ArgentinaFil: Klinke, Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Monaco, Hugo L.. Universita Di Verona; ItaliaFil: Ermacora, Mario Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto Multidisciplinario de Biología Celular (i); Argentina. Universidad Nacional de Quilmes; Argentin
    corecore