17 research outputs found

    Sanguinarine Induces Apoptosis Pathway in Multiple Myeloma Cell Lines via Inhibition of the JaK2/STAT3 Signaling.

    Get PDF
    Sanguinarine (SNG), a benzophenanthridine alkaloid, has displayed various anticancer abilities in several vivo and studies. However, the anticancer potential of SNG is yet to be established in multiple myeloma (MM), a mostly incurable malignancy of plasma cells. In this study, we aimed to investigate the potential anti-proliferative and pro-apoptotic activities of SNG in a panel of MM cell lines (U266, IM9, MM1S, and RPMI-8226). SNG treatment of MM cells resulted in a dose-dependent decrease in cell viability through mitochondrial membrane potential loss and activation of caspase 3, 9, and cleavage of PARP. Pre-treatment of MM cells with a universal caspase inhibitor, Z-VAD-FMK, prevented SNG mediated loss of cell viability, apoptosis, and caspase activation, confirming that SNG-mediated apoptosis is caspase-dependent. The SNG-mediated apoptosis appears to be resulted from suppression of the constitutively active STAT3 with a concomitant increase in expression of protein tyrosine phosphatase (SHP-1). SNG treatment of MM cells leads to down-regulation of the anti-apoptotic proteins including cyclin D, Bcl-2, Bclxl, and XIAP. In addition, it also upregulates pro-apoptotic protein, Bax. SNG mediated cellular DNA damage in MM cell lines by induction of oxidative stress through the generation of reactive oxygen species and depletion of glutathione. Finally, the subtoxic concentration of SNG enhanced the cytotoxic effects of anticancer drugs bortezomib (BTZ) by suppressing the viability of MM cells via induction of caspase-mediated apoptosis. Altogether our findings demonstrate that SNG induces mitochondrial and caspase-dependent apoptosis, generates oxidative stress, and suppresses MM cell lines proliferation. In addition, co-treatment of MM cell lines with sub-toxic doses of SNG and BTZ potentiated the cytotoxic activity. These results would suggest that SNG could be developed into therapeutic agent either alone or in combination with other anticancer drugs in MM

    Sanguinarine Induces Apoptosis Pathway in Multiple Myeloma Cell Lines via Inhibition of the JaK2/STAT3 Signaling

    Get PDF
    Sanguinarine (SNG), a benzophenanthridine alkaloid, has displayed various anticancer abilities in several vivo and in vitro studies. However, the anticancer potential of SNG is yet to be established in multiple myeloma (MM), a mostly incurable malignancy of plasma cells. In this study, we aimed to investigate the potential anti-proliferative and pro-apoptotic activities of SNG in a panel of MM cell lines (U266, IM9, MM1S, and RPMI-8226). SNG treatment of MM cells resulted in a dose-dependent decrease in cell viability through mitochondrial membrane potential loss and activation of caspase 3, 9, and cleavage of PARP. Pre-treatment of MM cells with a universal caspase inhibitor, Z-VAD-FMK, prevented SNG mediated loss of cell viability, apoptosis, and caspase activation, confirming that SNG-mediated apoptosis is caspase-dependent. The SNG-mediated apoptosis appears to be resulted from suppression of the constitutively active STAT3 with a concomitant increase in expression of protein tyrosine phosphatase (SHP-1). SNG treatment of MM cells leads to down-regulation of the anti-apoptotic proteins including cyclin D, Bcl-2, Bclxl, and XIAP. In addition, it also upregulates pro-apoptotic protein, Bax. SNG mediated cellular DNA damage in MM cell lines by induction of oxidative stress through the generation of reactive oxygen species and depletion of glutathione. Finally, the subtoxic concentration of SNG enhanced the cytotoxic effects of anticancer drugs bortezomib (BTZ) by suppressing the viability of MM cells via induction of caspase-mediated apoptosis. Altogether our findings demonstrate that SNG induces mitochondrial and caspase-dependent apoptosis, generates oxidative stress, and suppresses MM cell lines proliferation. In addition, co-treatment of MM cell lines with sub-toxic doses of SNG and BTZ potentiated the cytotoxic activity. These results would suggest that SNG could be developed into therapeutic agent either alone or in combination with other anticancer drugs in MM

    Anticancer potential of sanguinarine for various human malignancies

    No full text
    Sanguinarine (Sang) - a benzophenanthridine alkaloid extracted from Sanguinaria canadensis - exhibits antioxidant, anti-inflammatory, proapoptotic and growth inhibitory activities on tumor cells of various cancer types as established by in vivo and in vitro studies. Although the underlying mechanism of Sang antitumor activity is yet to be fully elucidated, Sang has displayed multiple biological effects, which remain to suggest its possible use in plant-derived treatments of human malignancies. This review covers the anticancer abilities of Sang including inhibition of aberrantly activated signal transduction pathways, induction of cell death and inhibition of cancer cell proliferation. It also highlights Sang-mediated inhibition of angiogenesis, inducing the expression of tumor suppressors, sensitization of cancer cells to standard chemotherapeutics to enhance their cytotoxic effects, while addressing the present need for further pharmacokinetic-based studies.Scopu

    Cisplatin based therapy: the role of the mitogen activated protein kinase signaling pathway

    No full text
    Abstract Cisplatin is a widely used chemotherapeutic agent for treatment of various cancers. However, treatment with cisplatin is associated with drug resistance and several adverse side effects such as nephrotoxicity, reduced immunity towards infections and hearing loss. A Combination of cisplatin with other drugs is an approach to overcome drug resistance and reduce toxicity. The combination therapy also results in increased sensitivity of cisplatin towards cancer cells. The mitogen activated protein kinase (MAPK) pathway in the cell, consisting of extracellular signal regulated kinase, c-Jun N-terminal kinase, p38 kinases, and downstream mediator p90 ribosomal s6 kinase (RSK); is responsible for the regulation of various cellular events including cell survival, cell proliferation, cell cycle progression, cell migration and protein translation. This review article demonstrates the role of MAPK pathway in cisplatin based therapy, illustrates different combination therapy involving cisplatin and also shows the importance of targeting MAPK family, particularly RSK, to achieve increased anticancer effect and overcome drug resistance when combined with cisplatin

    Metabolic Predictors of Equine Performance in Endurance Racing

    No full text
    Equine performance in endurance racing depends on the interplay between physiological and metabolic processes. However, there is currently no parameter for estimating the readiness of animals for competition. Our objectives were to provide an in-depth characterization of metabolic consequences of endurance racing and to establish a metabolic performance profile for those animals. We monitored metabolite composition, using a broad non-targeted metabolomics approach, in blood plasma samples from 47 Arabian horses participating in endurance races. The samples were collected before and after the competition and a total of 792 metabolites were measured. We found significant alterations between before and after the race in 417 molecules involved in lipids and amino acid metabolism. Further, even before the race starts, we found metabolic differences between animals who completed the race and those who did not. We identified a set of six metabolite predictors (imidazole propionate, pipecolate, ethylmalonate, 2R-3R-dihydroxybutyrate, β-hydroxy-isovalerate and X-25455) of animal performance in endurance competition; the resulting model had an area under a receiver operating characteristic (AUC) of 0.92 (95% CI: 0.85–0.98). This study provides an in-depth characterization of metabolic alterations driven by endurance races in equines. Furthermore, we showed the feasibility of identifying potential metabolic signatures as predictors of animal performance in endurance competition

    Metabolic Predictors of Equine Performance in Endurance Racing

    No full text
    Equine performance in endurance racing depends on the interplay between physiological and metabolic processes. However, there is currently no parameter for estimating the readiness of animals for competition. Our objectives were to provide an in-depth characterization of metabolic consequences of endurance racing and to establish a metabolic performance profile for those animals. We monitored metabolite composition, using a broad non-targeted metabolomics approach, in blood plasma samples from 47 Arabian horses participating in endurance races. The samples were collected before and after the competition and a total of 792 metabolites were measured. We found significant alterations between before and after the race in 417 molecules involved in lipids and amino acid metabolism. Further, even before the race starts, we found metabolic differences between animals who completed the race and those who did not. We identified a set of six metabolite predictors (imidazole propionate, pipecolate, ethylmalonate, 2R-3R-dihydroxybutyrate, β-hydroxy-isovalerate and X-25455) of animal performance in endurance competition; the resulting model had an area under a receiver operating characteristic (AUC) of 0.92 (95% CI: 0.85–0.98). This study provides an in-depth characterization of metabolic alterations driven by endurance races in equines. Furthermore, we showed the feasibility of identifying potential metabolic signatures as predictors of animal performance in endurance competition

    Cisplatin based therapy: the role of the mitogen activated protein kinase signaling pathway

    No full text
    Cisplatin is a widely used chemotherapeutic agent for treatment of various cancers. However, treatment with cisplatin is associated with drug resistance and several adverse side effects such as nephrotoxicity, reduced immunity towards infections and hearing loss. A Combination of cisplatin with other drugs is an approach to overcome drug resistance and reduce toxicity. The combination therapy also results in increased sensitivity of cisplatin towards cancer cells. The mitogen activated protein kinase (MAPK) pathway in the cell, consisting of extracellular signal regulated kinase, c-Jun N-terminal kinase, p38 kinases, and downstream mediator p90 ribosomal s6 kinase (RSK); is responsible for the regulation of various cellular events including cell survival, cell proliferation, cell cycle progression, cell migration and protein translation. This review article demonstrates the role of MAPK pathway in cisplatin based therapy, illustrates different combination therapy involving cisplatin and also shows the importance of targeting MAPK family, particularly RSK, to achieve increased anticancer effect and overcome drug resistance when combined with cisplatin.Other Information Published in: Journal of Translational Medicine License: http://creativecommons.org/licenses/by/4.0/See article on publisher's website: http://dx.doi.org/10.1186/s12967-018-1471-1</p

    Role of Non Receptor Tyrosine Kinases in Hematological Malignances and its Targeting by Natural Products

    No full text
    Abstract Tyrosine kinases belong to a family of enzymes that mediate the movement of the phosphate group to tyrosine residues of target protein, thus transmitting signals from the cell surface to cytoplasmic proteins and the nucleus to regulate physiological processes. Non-receptor tyrosine kinases (NRTK) are a sub-group of tyrosine kinases, which can relay intracellular signals originating from extracellular receptor. NRTKs can regulate a huge array of cellular functions such as cell survival, division/propagation and adhesion, gene expression, immune response, etc. NRTKs exhibit considerable variability in their structural make up, having a shared kinase domain and commonly possessing many other domains such as SH2, SH3 which are protein-protein interacting domains. Recent studies show that NRTKs are mutated in several hematological malignancies, including lymphomas, leukemias and myelomas, leading to aberrant activation. It can be due to point mutations which are intragenic changes or by fusion of genes leading to chromosome translocation. Mutations that lead to constitutive kinase activity result in the formation of oncogenes, such as Abl, Fes, Src, etc. Therefore, specific kinase inhibitors have been sought after to target mutated kinases. A number of compounds have since been discovered, which have shown to inhibit the activity of NRTKs, which are remarkably well tolerated. This review covers the role of various NRTKs in the development of hematological cancers, including their deregulation, genetic alterations, aberrant activation and associated mutations. In addition, it also looks at the recent advances in the development of novel natural compounds that can target NRTKs and perhaps in combination with other forms of therapy can show great promise for the treatment of hematological malignancies

    Targeting of X-linked inhibitor of apoptosis protein and PI3-kinase/AKT signaling by embelin suppresses growth of leukemic cells

    No full text
    <div><p>The X-linked inhibitor of apoptosis (XIAP) is a viable molecular target for anticancer drugs that overcome apoptosis-resistance of malignant cells. XIAP is an inhibitor of apoptosis, mediating through its association with BIR3 domain of caspase 9. Embelin, a quinone derivative isolated from the <i>Embelia ribes</i> plant, has been shown to exhibit chemopreventive, anti-inflammatory, and apoptotic activities via inhibiting XIAP activity. In this study, we found that embelin causes a dose-dependent suppression of proliferation in leukemic cell lines K562 and U937. Embelin mediated inhibition of proliferation correlates with induction of apoptosis. Furthermore, embelin treatment causes loss of mitochondrial membrane potential and release of cytochrome c, resulting in subsequent activation of caspase-3 followed by polyadenosin-5’-diphosphate-ribose polymerase (PARP) cleavage. In addition, embelin treatment of leukemic cells results in a decrease of constitutive phosphorylations/activation level of AKT and downregulation of XIAP. Gene silencing of XIAP and AKT expression showed a link between XIAP expression and activated AKT in leukemic cells. Interestingly, targeting of XIAP and PI3-kinase/AKT signaling augmented inhibition of proliferation and induction of apoptosis in leukemic cells. Altogether these findings raise the possibility that embelin alone or in combination with inhibitors of PI3-kinase/AKT pathway may have therapeutic usage in leukemia and possibly other malignancies with up-regulated XIAP pathway.</p></div
    corecore