4,547 research outputs found

    Generalized Measurement Invariance Tests with Application to Factor Analysis

    Get PDF
    The issue of measurement invariance commonly arises in factor-analytic contexts, with methods for assessment including likelihood ratio tests, Lagrange multiplier tests, and Wald tests. These tests all require advance definition of the number of groups, group membership, and offending model parameters. In this paper, we construct tests of measurement invariance based on stochastic processes of casewise derivatives of the likelihood function. These tests can be viewed as generalizations of the Lagrange multiplier test, and they are especially useful for: (1) isolating specific parameters affected by measurement invariance violations, and (2) identifying subgroups of individuals that violated measurement invariance based on a continuous auxiliary variable. The tests are presented and illustrated in detail, along with simulations examining the tests' abilities in controlled conditions.measurement invariance, parameter stability, factor analysis, structural equation models

    Selective phenotyping, entropy reduction, and the mastermind game.

    Get PDF
    BACKGROUND: With the advance of genome sequencing technologies, phenotyping, rather than genotyping, is becoming the most expensive task when mapping genetic traits. The need for efficient selective phenotyping strategies, i.e. methods to select a subset of genotyped individuals for phenotyping, therefore increases. Current methods have focused either on improving the detection of causative genetic variants or their precise genomic location separately. RESULTS: Here we recognize selective phenotyping as a Bayesian model discrimination problem and introduce SPARE (Selective Phenotyping Approach by Reduction of Entropy). Unlike previous methods, SPARE can integrate the information of previously phenotyped individuals, thereby enabling an efficient incremental strategy. The effective performance of SPARE is demonstrated on simulated data as well as on an experimental yeast dataset. CONCLUSIONS: Using entropy reduction as an objective criterion gives a natural way to tackle both issues of detection and localization simultaneously and to integrate intermediate phenotypic data. We foresee entropy-based strategies as a fruitful research direction for selective phenotyping

    Long wavelength properties of phase field crystal models with second order dynamics

    Get PDF
    The phase field crystal (PFC) approach extends the notion of phase field models by describing the topology of the microscopic structure of a crystalline material. One of the consequences is that local variation of the interatomic distance creates an elastic excitation. The dynamics of these excitations poses a challenge: pure diffusive dynamics cannot describe relaxation of elastic stresses that happen through phonon emission. To this end, several different models with fast dynamics have been proposed. In this article we use the amplitude expansion of the PFC model to compare the recently proposed hydrodynamic PFC amplitude model with two simpler models with fast dynamics. We compare these different models analytically and numerically. The results suggest that in order to have proper relaxation of elastic excitations, the full hydrodynamical description of the PFC amplitudes is required.Comment: 10 pages, 7 figure

    Guarded Second-Order Logic, Spanning Trees, and Network Flows

    Full text link
    According to a theorem of Courcelle monadic second-order logic and guarded second-order logic (where one can also quantify over sets of edges) have the same expressive power over the class of all countable kk-sparse hypergraphs. In the first part of the present paper we extend this result to hypergraphs of arbitrary cardinality. In the second part, we present a generalisation dealing with methods to encode sets of vertices by single vertices

    Plasma Lens Backgrounds at a Future Linear Collider

    Full text link
    A 'plasma lens' might be used to enhance the luminosity of future linear colliders. However, its utility for this purpose depends largely on the potential backgrounds that may be induced by the insertion of such a device in the interaction region of the detector. In this note we identify different sources of such backgrounds, calculate their event rates from the elementary interaction processes, and evaluate their effects on the major parts of a hypothetical Next Linear Collider (NLC) detector. For plasma lens parameters which give a factor of seven enhancement of the luminosity, and using the NLC design for beam parameters as a reference, we find that the background yields are fairly high, and require further study and improvements in detector technology to avoid their impact.Comment: 14 pages incl. 3 figures; contributed to the 4th International Workshop, Electron-Electron Interactions at TeV Energies, Santa Cruz, California, Dec. 7 - 9, 2001. To be published in Int.Journ. Mod. Phys.

    Probing Exciton Localization in Single-Walled Carbon Nanotubes Using High-Resolution Near-Field Microscopy

    Get PDF
    We observe localization of excitons in semiconducting single-walled carbon nanotubes at room temperature using high-resolution near-field photoluminescence (PL) microscopy. Localization is the result of spatially confined exciton energy minima with depths of more than 15 meV connected to lateral energy gradients exceeding 2 meV/nm as evidenced by energy-resolved PL imaging. Simulations of exciton diffusion in the presence of energy variations support this interpretation predicting strongly enhanced PL at local energy minima

    LPM-Effect in Monte Carlo Models of Radiative Energy Loss

    Full text link
    Extending the use of Monte Carlo (MC) event generators to jets in nuclear collisions requires a probabilistic implementation of the non-abelian LPM effect. We demonstrate that a local, probabilistic MC implementation based on the concept of formation times can account fully for the LPM-effect. The main features of the analytically known eikonal and collinear approximation can be reproduced, but we show how going beyond this approximation can lead to qualitatively different results.Comment: 4 pages, 3 figures - To appear in the conference proceedings for Quark Matter 2009, March 30 - April 4, Knoxville, Tennessee; v2: removed line number
    • …
    corecore