
Generalized measurement invariance
tests with application to factor
analysis

Edgar C. Merkle, Achim Zeileis

Working Papers in Economics and Statistics

2011-09

University of Innsbruck
http://eeecon.uibk.ac.at/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6560192?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Generalized Measurement Invariance Tests with

Application to Factor Analysis

Edgar C. Merkle
Wichita State University

Achim Zeileis
Universität Innsbruck

Abstract

The issue of measurement invariance commonly arises in factor-analytic contexts, with
methods for assessment including likelihood ratio tests, Lagrange multiplier tests, and
Wald tests. These tests all require advance definition of the number of groups, group
membership, and offending model parameters. In this paper, we construct tests of mea-
surement invariance based on stochastic processes of casewise derivatives of the likelihood
function. These tests can be viewed as generalizations of the Lagrange multiplier test, and
they are especially useful for: (1) isolating specific parameters affected by measurement
invariance violations, and (2) identifying subgroups of individuals that violated measure-
ment invariance based on a continuous auxiliary variable. The tests are presented and
illustrated in detail, along with simulations examining the tests’ abilities in controlled
conditions.

Keywords: measurement invariance, parameter stability, factor analysis, structural equation
models.

1. Introduction

The assumption that parameters are invariant across observations is a fundamental tenet of
many statistical models. A specific type of parameter invariance, measurement invariance, has
implications for the general design and use of psychometric scales. This concept is particularly
important because violations can render the scales useless. That is, if a set of scales violates
measurement invariance, then individuals with the same “amount” of a latent variable may
systematically receive different scale scores. This may lead researchers to conclude subgroup
differences on a wide variety of interesting constructs when, in reality, the scales are the
sole cause of the differences. Further, it can be inappropriate to incorporate scales violating
measurement invariance into structural equation models, where relationships between latent
variables are hypothesized. Horn and McArdle (1992) concisely summarize the impact of
these issues, stating “Lack of evidence of measurement invariance equivocates conclusions and
casts doubt on theory in the behavioral sciences” (p. 141). Borsboom (2006) further notes
that researchers often fail to assess whether measurement invariance holds.

In this paper, we consider a new family of tests for assessing measurement invariance that has
important advantages over existing tests. We begin by developing a general framework for the
tests. This leads to a discussion of theoretical results relevant to the proposed tests, as well as
a comparison of the proposed tests to the existing tests. Next, we study the proposed tests’
abilities through example and simulation. Finally, we discuss some interesting extensions of
the tests. Throughout the manuscript, we use the term test to refer to a statistical test and
the term scale to refer to a psychometric test or scale.



2 Generalized Measurement Invariance Tests

2. Framework

The methods proposed here are generally relevant to situations where the p-dimensional ran-
dom variable X with associated observations xi, i = 1, · · · , n is specified to arise from a model
with density f(xi;θ) and associated joint log-likelihood

`(θ;x1, . . . ,xn) =

n∑
i=1

`(θ;xi) =

n∑
i=1

log f(xi;θ), (1)

where θ is some k-dimensional parameter vector that characterizes the distribution. The
methods are applicable under very general conditions, essentially whenever standard assump-
tions for maximum likelihood inference hold (for more details see below). For the measure-
ment invariance applications considered in this paper, we employ a factor analysis model with
assumed multivariate normality:

f(xi;θ) =
1

(2π)p/2|Σ(θ)|1/2
exp

{
−1

2
(xi − µ(θ))>Σ(θ)−1(xi − µ(θ)

}
, (2)

`(θ;xi) = −1

2

{
(xi − µ(θ))>Σ(θ)−1(xi − µ(θ)) + log |Σ(θ)| + p log(2π)

}
, (3)

with model-implied mean vector µ(θ) and covariance matrix Σ(θ). As pointed out above, the
assumptions for the tests introduced here do not require this specific form of the likelihood,
but it is presented for illustration due to its importance in practice. Many expositions of factor
analysis utilize the likelihood for the sample covariance matrix, which is based on a Wishart
distribution when the xi are assumed to be multivariate normal. However, the techniques
presented below require the casewise contributions to the likelihood; this situation is also
generally encountered in structural equation models with missing data (e.g., Wothke 2000).

Within the general framework outlined above and under the usual regularity conditions, the
model parameters θ can be estimated by maximum likelihood (ML), i.e.,

θ̂ = argmax
θ

`(θ;x1, . . . , xn), (4)

or equivalently by solving the first order conditions

n∑
i=1

s(θ̂;xi) = 0, (5)

where

s(θ;xi) =

(
∂`(θ;xi)

∂θ1
, . . . ,

∂`(θ;xi)

∂θk

)>
, (6)

is the score function of the model, i.e., the partial derivative of the casewise likelihood con-
tributions w.r.t. the parameters θ. Evaluation of the score function at θ̂ for i = 1, . . . , n
essentially measures the extent to which each individual’s likelihood is maximized.

One central assumption – sometimes made implicitly – is that the same model parameters
θ hold for all individuals i = 1, . . . , n. If this is not satisfied, the estimates θ̂ are typically
not meaningful and cannot be easily interpreted. One potential source of deviation from this
assumption is lack of measurement invariance, investigated in the following section.
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3. Tests of measurement invariance

In general terms, a set of scales is defined to be measurement invariant with respect to an
auxiliary variable V if:

f(X|T, V, . . . ) = f(X|T, . . . ), (7)

where X is a data matrix, T is the latent variable that the scales purport to measure, and f is
the model’s distributional form. In the parametric framework adopted here, this means that
the parameter vector θ (or some subset of θ; see Meredith 1993) is equal across subgroups of
individuals and thus does not vary with any variable V .

To frame this as a formal hypothesis, we assume that – in principle – Model (1) holds for all
individuals but with a potentially individual-specific parameter vector θi. The null hypothesis
of measurement invariance is then equivalent to the null hypothesis of parameter constancy

H0 : θi = θ0, (i = 1, . . . , n), (8)

which should be tested against the alternative that the parameters are some nonconstant
function θ(·) of the variable V with observations v1, . . . , vn, i.e.,

H1 : θi = θ(vi), (i = 1, . . . , n). (9)

where the pattern θ(V ) of deviation from measurement invariance is typically not known (ex-
actly) in practice. If it were (see below for some concrete examples), then standard inference
methods – such as likelihood ratio, Wald, or Lagrange multiplier tests – could be employed.
However, if the pattern is unknown, it is difficult to develop a single test that is well-suited for
all conceivable patterns. But it is possible to derive a family of tests so that representatives
from this family are well-suited for a wide range of possible patterns. One pattern of partic-
ular interest involves V dividing the individuals into two subgroups with different parameter
vectors

H∗1 : θi =

{
θ(A) if vi ≤ ν,
θ(B) if vi > ν,

(10)

where θ(A) 6= θ(B). This could pertain to two different age groups, income groups, genders,
etc.

Note that even when adopting H∗1 as the relevant alternative, the pattern θ(V ) is not com-
pletely specified unless the cutpoint ν is known in advance. In this situation, all individuals
can be grouped based on V , and we can apply standard theory: nested multiple group models
(e.g., Jöreskog 1971; Bollen 1989) coupled with likelihood ratio (LR) tests are most common,
although the asymptotically equivalent Lagrange multiplier (LM) and Wald tests may also
be constructed for this purpose (see Satorra 1989). If ν is unknown (as is often the case for
continuous V ), however, then standard theory is not easily applied. Nonstandard inference
methods, such as those proposed in this paper, are then required.

In the following section, we describe the standard approaches to testing measurement invari-
ance with ν known. We then contrast these approaches with the tests proposed in this paper.
We assume throughout that the observations i = 1, . . . , n are ordered with respect to the
random variable V of interest such that v1 ≤ v2 ≤ · · · ≤ vn. We also assume that the mea-
surement model is correctly specified, as is implicitly assumed under traditional measurement
invariance approaches.
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3.1. Likelihood ratio, Wald, and Lagrange multiplier test for fixed subgroups

To employ the LR test for assessing measurement invariance, model parameters are estimated
separately for a certain number of subgroups of the data (with some parameters potentially
restricted to be equal across subgroups). For ease of exposition, we describe the case where
there are no such parameter restrictions; as shown in the example and simulation below,
however, it is straightforward to extend all methods to the more general case. After fitting the
model to each subgroup, the sum of maximized likelihoods from the subgroups are compared
with the original maximized full-sample likelihood in a χ2 test. For the special case of two
subgroups, the alternative H∗1 from (10) with fixed and prespecified ν is adopted and the
null hypothesis H0 from (8) reduces to θ(A) = θ(B). The parameter estimates θ̂(A) can then
be obtained from the observations i = 1, . . . ,m, say, for which vi ≤ ν. Analogously, θ̂(B) is
obtained by maximizing the likelihood for the observations i = m+1, . . . , n, for which vi > ν.
The LR test statistic for the given threshold ν is then

LR(ν) = − 2
[
`(θ̂;x1, . . . , xn) − {`(θ̂(A);x1, . . . , xm) + `(θ̂(B);xm+1, . . . , xn)}

]
, (11)

which has an asymptotic χ2 with degrees of freedom equal to the number of parameters in θ.

Analogously to the LR test, the Wald test and LM test (also known as score test) can be
employed to test the null hypothesis H∗1 for a fixed threshold ν. For the Wald test, the idea is
to compute the Wald statistic W (ν) as a quadratic form in θ̂(A)− θ̂(B), utilizing its estimated
covariance matrix for standardization. For the LM test, the LM statistic LM (ν) is a quadratic
form in s(θ̂;x1, . . . , xm) and s(θ̂;xm+1, . . . , xn). Thus, the three tests all assess differences
that should be zero under H0: for the LR test the difference of maximized likelihoods; for
the Wald test, the difference of parameter estimates; and for the LM test, the differences of
likelihood scores from zero. In the LR case, the parameters have to be estimated under both
the null hypothesis and alternative. Conversely, the Wald case requires only the estimates
under the alternative, while the LM case requires only the estimates under the null hypothesis.

3.2. Extensions for unknown subgroups

For assessing measurement invariance in psychometric models, the major limitation of the
three tests is that the potential subgroups have to be known in advance. Even if the variable
V w.r.t. which the violation of invariance occurs is known, the threshold ν from (10) is often
unknown in practice. For example, if V represents yearly income, there are many possible
values of ν that could be used to divide individuals into poorer and richer groups. The
ultimate ν that we choose could potentially impact our conclusions about whether or not a
scale is measurement invariant, in the same way that dichotomization of continuous variables
impacts general psychometric analyses (MacCallum, Zhang, Preacher, and Rucker 2002).

Instead of choosing a specific ν, a natural idea is to compute LR(ν) for each possible value
in some interval [ν, ν] and reject if their maximum

max
ν∈[ν,ν]

LR(ν) (12)

becomes large. Note that this corresponds to maximizing the likelihood w.r.t. an additional
parameter, namely ν. Hence, the asymptotic distribution of the maximum LR statistic is not
χ2 anymore. Andrews (1993) showed that the asymptotic distribution is in fact tractable but
nonstandard. Specifically, the asymptotic distribution of (12) is the maximum of a certain
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tied-down Bessel process whose specifics also depend on the minimal and maximal thresholds
ν and ν, respectively. See below for more details.

Analogously, one can consider maxW (ν) and max LM (ν), respectively, which both have the
same asymptotic properties as max LR(ν) and are asymptotically equivalent (Andrews 1993).
From a computational perspective, the max LM (ν) test is particularly convenient because it
requires just a single set of estimated parameters θ̂ which is employed for all thresholds ν in
[ν, ν]. The other two tests require reestimation of the subgroup model for each ν.

So far, the discussion focused on the alternative H∗1 : The maximum LR, Wald, and LM tests
are designed for a situation where there is a single threshold at which all parameters in the
vector θ change. While this is plausible and intuitive in many applications, it would also
be desirable to obtain tests that direct their power against other types of alternatives, i.e.,
against H1 with other patterns θ(V ). For example, the parameters may fluctuate randomly
or there might be multiple thresholds at which the parameters change. Alternatively, only
one (or just a few) of the parameters in the vector θ change while the remaining parameters
are constant (a common occurrence in psychometric models). To address such situations in a
unified way, the next section contains a general framework for testing measurement invariance
along a (continuous) variable V that includes the maximum LM test as a special case.

4. Stochastic processes for measurement invariance

As discussed above, factor analysis models are typically estimated by fitting the model to all
i = 1, . . . , n individuals, assuming that the parameter vector θ is constant across individuals.
Having estimated the parameters θ̂, the goal is to check that all subgroups of individuals
conform with the model (for all of the parameters). Hence, some measure of model deviation
or residual is required that captures the lack of fit for the i-th individual at the j-th parameter
(i = 1, . . . , n, j = 1, . . . , k). A natural measure – that employs the ideas of the LM test –
is s(θ̂;xi)j : the j-th component of the contribution of the i-th observation to the score
function. By construction, the sum of the score contributions over all individuals is zero
for each component; see (5). Moreover, if there are no systematic deviations, the score
contributions should fluctuate randomly around zero. Conversely, the score contributions
should be shifted away from zero for subgroups where the model does not fit.

Therefore, to employ this quantity for tests of measurement invariance against alternatives of
type (9), we need to overcome two obstacles: (1) make use of the ordering of the observations
w.r.t. V because we want to test for changes “along” V ; (2) account for potential correlations
between the k components of the parameters to be able to detect which parameter(s) change
(if any).

4.1. Theory

The test problem of the null hypothesis (8) against the alternatives (9) and (10), respectively,
has been studied extensively in the statistics and econometrics literature under the label
“structural change tests” (see e.g., Brown, Durbin, and Evans 1975; Andrews 1993) where
the focus of interest is the detection of parameter instabilities of time series models “along”
time. Specifically, it has been shown (e.g., Nyblom 1989; Hansen 1992; Hjort and Koning
2002; Zeileis and Hornik 2007) that cumulative sums of the empirical scores follow specific
stochastic processes, allowing us to use them to generally test measurement invariance. Here,
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we review some of the main results from that literature and adapt it to the specific challenges
of factor analysis models. More detailed accounts of the underlying structural change methods
include Hjort and Koning (2002) and Zeileis and Hornik (2007).

For application to measurement invariance, the most important theoretical result involves the
fact that, under H0, the cumulative score process converges to a specific asymptotic process.
The k-dimensional cumulative score process is defined as

B(t; θ̂) = Î−1/2n−1/2
bntc∑
i=1

s(θ̂;xi) (0 ≤ t ≤ 1) (13)

where bntc is the integer part of nt and Î is some consistent estimate of the covariance matrix
of the scores, e.g., their outer product or the observed information matrix. As the equa-
tion shows, the cumulative score process adds subsets of casewise score contributions across
individuals along the ordering w.r.t. the variable V of interest. At t = 1/n, only the first
individual’s contribution enters into the summation; at t = 2/n, the first two individuals’
contributions etc. until t = n/n where all contributions enter the sum. Thus, due to (5),
the cumulative score process always equals zero at t = 0 and returns to zero at t = 1. Fur-
thermore, multiplication by Î−1/2 “decorrelates” the k cumulative score processes, such that
each univariate process (i.e., each process for a single model parameter) is unrelated to (and
asymptotically independent of) all other processes. Therefore, this cumulative processB(t; θ̂)
accomplishes the challenges discussed at the beginning of this section: it makes use of the
ordering of the observations by taking cumulative sums, and it decorrelates the contributions
of the k different parameters.

Inference can then be based on an extension of the usual central limit theorem. Under
the assumption of independence of individuals (implicit already in Equation 1) and under
the usual ML regularity conditions (assuring asymptotic normality of θ̂), Hjort and Koning
(2002) show that

B(·; θ̂)
d→ B0(·), (14)

where
d→ denotes convergence in distribution andB0(·) is a k-dimensional Brownian bridge. In

words, there are k cumulative score processes, one for each model parameter. This collection
of processes follows a multidimensional Brownian bridge as score contributions accumulate in
the summation from individual 1 (with lowest value of V ) to individual n (with highest value
of V ).

The empirical cumulative score process from (13) can also be viewed as an n × k matrix
with elements B(i/n; θ̂)j that we also denote B(θ̂)ij below for brevity. Each column of this
matrix converges to a univariate Brownian bridge and pertains to a single factor analysis
parameter. To carry out a test of H0, this process/matrix needs to be aggregated to a scalar
test statistic by collapsing across rows (individuals) and columns (parameters) of the matrix.
The asymptotic distribution of this test statistic is then easily obtained by applying the same
aggregation to the asymptotic process B0 (Hjort and Koning 2002; Zeileis and Hornik 2007),
so that corresponding p values can be derived.

As argued above, no single aggregation function will have high power for any conceivable
pattern of measurement invariance θ(V ), while any (reasonable) aggregation function will
have non-trivial power under H1. Thus, various aggregation strategies should be employed
depending on which pattern θ(V ) is most plausible (because the exact pattern is typically
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unknown). A particularly agnostic aggregation strategy is to reject H0 if any component of
the the cumulative score process B(t; θ̂) strays “too far” from zero at any time, i.e., if

DM = max
i=1,...,n

max
j=1,...,k

|B(θ̂)ij |, (15)

becomes large. Consquently, this double maximum statistic allows for simultaneous isolation
of the threshold(s) of parameter change (over the individuals i = 1, . . . , n) and the param-
eter(s) affected by it (over j = 1, . . . , k). This test is especially useful for visualization, as
the cumulative score process for each individual parameter can be displayed along with the
appropriate critical value. An example of this visualization appears in the example section
(Figure 4).

However, taking maximums “wastes” power if many of the k parameters change at the same
threshold, or if the score process takes large values for many of the n individuals (and not
just a single threshold). In such cases, sums insteads of maximums are more suitable for
collapsing across parameters and/or individuals because they combine the deviations instead
of picking out only the single largest deviation. Thus, if the parameter instability θ(V ) affects
many parameters and leads to many subgroups, sums of (absolute or squared) values should
be used for collapsing both across parameters and individuals. On the other hand, if there
is just a single threshold that affects multiple parameters, then the natural aggregation is by
sums over parameters and then by the maximum over individuals. More precisely, the former
idea leads to a Cramér-von Mises type statistic and the latter to the maximum LM statistic
from the previous section:

CvM = n−1
∑

i=1,...,n

∑
j=1,...,k

B(θ̂)2ij , (16)

max LM = max
i=i,...,ı

{
i

n

(
1− i

n

)}−1 ∑
j=1,...,k

B(θ̂)2ij , (17)

where the max LM statistic is additionally scaled by the asymptotic variance t(1 − t) of the
process B(t, θ̂). It is equivalent to the maxν LM (ν) from the previous section (provided that
the boundaries for the subgroups sizes i/ν and ı/ν are chosen analogously).

Further aggregation functions have been suggested in the structural change literature (see
e.g., Zeileis 2005; Zeileis, Shah, and Patnaik 2010) but the three tests above are most likely
to be useful in psychometric settings.

Finally, all tests can be easily modified to address the situation of so-called “partial struc-
tural changes” (Andrews 1993). This refers to the case of some parameters being known
to be stable, i.e., restricted to be constant across potential subgroups. Tests for potential
changes/instabilities only in the k∗ remaining parameters (from overall k parameters) are
easily constructed by omitting those k − k∗ columns from B(θ̂)ij that are restricted/stable,
retaining only those k∗ columns that are potentially instable. This may be of special interest
to those wishing to test specific types of measurement invariance, where subsets of model
parameters are assumed to be stable.

4.2. Critical values and p values

As pointed out above, specification of the asymptotic distribution under H0 for the test
statistics from the previous section is straightforward: It is simply the aggregation of the
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asympotic process B0(t) (Hjort and Koning 2002; Zeileis and Hornik 2007). Thus, DM
from (15) converges to supt ||B0(t)||∞, where || · ||∞ denotes the maximum norm. Similarly,
CvM from (16) converges to

∫ 1
0 ||B

0(t)||22dt, where || · ||2 denotes the Euclidean norm. Fi-
nally, max LM from (17) – and analogously the maximum Wald and LR tests – converges
to supt(t(1 − t))−1||B0(t)||22 (which can also be interpreted as the maximum of a tied-down
Bessel process, as pointed out previously).

While it is easy to formulate these asymptotic distributions theoretically, it is not always easy
to find closed-form solutions for computing critical values and p values from them. In some
cases – in particular for the double maximum test – such a closed-form solution is available
from analytic results for Gaussian processes (see e.g., Shorack and Wellner 1986). For all
other cases, tables of critical values can be obtained from direct simulation (Zeileis 2006)
or in combination with more refined techniques such as response surface regression (Hansen
1997).

The analytic solution for the asymptotic p value of a DM statistic d is

P (DM > d | H0)
asy
= 1−

{
1 + 2

∞∑
h=1

(−1)h exp(−2h2d2)

}k
. (18)

This combines the crossing probability of a univariate Brownian bridge (see e.g., Shorack and
Wellner 1986; Ploberger and Krämer 1992) with a straightforward Bonferroni correction to
obtain the k-dimensional case. The terms in the summation quickly go to zero as h goes to
infinity, so that only some large finite number of terms (say, 100) need to be evaluated in
practice.

For the Cramér-von Mises test statistic CvM , Nyblom (1989) and Hansen (1992) provide
small tables of critical values which have been extended in the software provided by Zeileis
(2006). Critical values for the distribution of the maximum LR/Wald/LM tests are provided
by Hansen (1997). Note that the distribution depends on the minimal and maximal thresholds
employed in the test.

4.3. Locating the invariance

If the employed parameter instability test detects a measurement invariance violation, the
researcher is typically interested in identification of the parameter(s) affected by it and/or the
associated threshold(s). As argued above, the double maximum test is particularly appealing
for this because the k-dimensional empirical cumulative score process can be graphed along
with boundaries for the associated critical values. Boundary crossing then implies a violation
of measurement invariance, and the location of the most extreme deviation(s) in the process
convey threshold(s) in the underlying ordering V .

For the maximum LR/Wald/LM tests, it is natural to graph the sequence of LR/Wald/LM
statistics along V , with a boundary corresponding to the critical value. Again, a boundary
crossing signals a significant violation, and the peak(s) in the sequence of statistics con-
veys threshold(s). Note that, due to summing over all parameters, no specific parameter
can be identified that is responsible for the violation. Similarly, neither component(s) nor
threshold(s) can be formally identified for the Cramér-von Mises test. However, graphing
of (transformations of) the cumulative score process may still be valuable for gaining some
insights (see, e.g., Figure 2).
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If a measurement invariance violation is detected by any of the tests, one may want to in-
corporate it into the model to account for it. The procedure for doing this typically depends
on the type of violation θ(V ), and the visualizations discussed above often prove helpful in
determining a suitable parameterization. In particular, one approach that is often employed
in practice involves adoptions of a model with one (or more) threshold(s) in all parameters
(i.e., (10) for the single threshold case). In the multiple threshold case, their location can be
determined by maximizing the corresponding segmented log-likelihood over all possible com-
binations of thresholds (Zeileis et al. 2010 adapt a dynamic programming algorithm to this
task). For the single threshold case, this reduces to maximizing the segmented log-likelihood

`(θ̂(A);x1, . . . , xm) + `(θ̂(B);xm+1, . . . , xn) (19)

over all values of m corresponding to possible thresholds ν (such that vm ≤ ν and vm+1 > ν).
As pointed out previously, this is equivalent to maximizing the LR statistic from (11) (with
some minimal subgroup size typically imposed).

Formally speaking, the maximization of (19) – or equivalently (11) – yields an estimate ν̂ of
the threshold in H∗1 . If H∗1 is in fact the true model, the peaks in the Wald/LM sequences and
the cumulative score process, respectively, will occur at the same threshold asymptotically.
However, in empirical samples, their location may differ somewhat (although often not by
much).

These attributes give the proposed tests important advantages over existing tests, as existing
measurement invariance methods cannot: (1) isolate specific parameters violating measure-
ment invariance, or (2) test measurement invariance for unknown ν. In particular, Millsap
(2005) cites “locating the invariance violation” as a major outstanding problem in the field.

In the next section, we present an example involving a single data set drawn from a known
factor analysis model. Following the example, we consider a full simulation study involving
the same factor analysis model.

5. Example with artificial data

Consider the factor analysis model in Figure 1, which includes six manifest variables, two
correlated factors, and a single auxiliary variable V . Though an applied framework is unnec-
essary for the example, we may imagine that six scales have been administered to students
aged 13 to 18 years, with three of the scales intended to measure verbal ability and three of
the scales intended to measure mathematical ability. We assume a measurement invariance
violation for the factor loading parameters, whereby the factor loadings for individuals with
low values of V are smaller than the factor loadings for individuals with high values of V (e.g.,
factor loadings for older students are larger than those for younger students). We generally
wish to assess measurement invariance with respect to V (student age).

5.1. Method

The base factor analysis model, displayed in Figure 1 with set parameter values, specifies that
measurement invariance holds. For the measurement invariance violation, we specify that V
(student age) impacts the values of verbal factor loadings in the model: if students are 16
through 18 years of age, then the factor loadings corresponding to the first factor (λ11, λ21, λ31)
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Figure 1: Path diagram representing the base factor analysis model used for the example
and simulations. To induce measurement invariance violations, a seventh observed variable
(student age) determines the values of the verbal factor loadings (λ11, λ21, λ31).

reflect those in Figure 1. If students are 13 through 15 years of age, however, then the factor
loadings corresponding to the first factor are three standard errors (= asymptotic standard
errors divided by

√
n) lower than those in Figure 1. This violation states, e.g., that the verbal

ability scales lack measurement invariance with respect to age. For simplicity, we assume that
the mathematical scales are invariant.

A sample of size 200 was generated from the model described above, and a test was conducted
to examine measurement invariance of the three verbal scales. To carry out the test, a
confirmatory factor analysis model (with the paths displayed in Figure 1) was fit to the data.
Casewise derivatives and the observed information matrix were then obtained, and they were
used to calculate the cumulative score process via (13). Finally, we obtained various test
statistics and p values from the cumulative score process. These include the double-max
statistic from (15), the Cramér-von Mises statistic from (16), and the max LM statistic from
(17).

As mentioned in the theory section, the tests give us the flexibility to study hypotheses of
partial change. That is, we have the ability to test various subsets of parameters. For example,
if we suspected that the verbal factor loadings lacked measurement invariance, we could test

H0 : (λi,11 λi,21 λi,31) = (λ0,11 λ0,21 λ0,31), i = 1, . . . , n, (20)

where (λi,11 λi,21 λi,31) represent the verbal factor loading parameters for student i. Thus,
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here only k∗ = 3 from the overall k = 19 model parameters (including means) are assessed.
Alternatively, we can consider all k∗ = k = 19 parameters, leading to a test of (8). We
consider both of these tests below.

5.2. Results

In the results section, we first describe overall results. We then describe estimation of ν and
isolation of model parameters violating measurement invariance.

Overall Results

Test statistics for the hypotheses (20) and (8) are displayed in Figure 2. Each panel displays a
test statistic’s fluctuation across values of student age, with the first column containing tests
of (20) and the second column containing tests of (8). The solid horizontal lines represent
critical values for α = 0.05, and the Cramér-von Mises panels also contain a dashed line
depicting the value of the test statistic (test statistics for the others are simply the maxima
of the processes). In other words, for panels in the first and third rows, (20) is rejected if the
process crosses the horizontal line. For panels in the second row, (8) is rejected if the dashed
horizontal line is higher than the solid horizontal line.

The figures convey information about several properties of the tests. First, all three tests
are more powerful (and in this example significant) if we test only those parameters that
are subject to instabilities. Conversely, if all 19 model parameters are assessed (including
those that are in fact invariant), the power is decreased. This decrease, however, is less
pronounced for the double-max test as it is more sensitive to fluctuations among a small
subset of parameters.

Figure 3 compares the max LM statistic (solid line) to the max LR statistic (dashed line) from
(12), as applied to testing (8). The critical values for these two tests are identical, hence the
single horizontal line. The figure shows that the two statistics are very similar to one another,
with both maxima at the dotted vertical line. This is generally to be expected, because the
two tests are asymptotically equivalent. The max LR statistic cannot be obtained from the
empirical fluctuation process, however, so the factor analysis model must be refitted before
and after each of the possible threshold values ν (i.e., here 320 model fits for 160 thresholds).

Estimation of ν and parameter isolation

As described above, the tests of (20) imply that the verbal scales lack measurement invariance.
We can also use the tests to: (1) estimate the threshold ν, and (2) isolate specific parameters
that violate measurement invariance. For example, as described previously, estimates of ν can
be obtained by examining the peaks in Figure 2. For all six panels in the figure, the peaks
occur near an age of 16.1. This agrees well with the true threshold of 16.0.

As mentioned previously, the double-max test is advantageous because it yields information
about individual parameters violating measurement invariance. That is, it allows us to ex-
amine whether or not individual parameters’ cumulative score processes lead one to reject
the hypothesis of measurement invariance. Figure 4 shows the individual cumulative score
processes for the verbal factor loadings, with the horizontal lines reflecting the critical value
at α = 0.05. The figure shows that the third parameter (i.e., λ31) crosses the dashed line,
so we would conclude a measurement invariance violation for the third verbal test. The fact
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Figure 2: Three test statistics of (20) (with k∗ = 3) and (8) (with k∗ = 19), based on the
example involving measurement invariance with respect to student age. Solid, horizontal lines
represent critical values at α = 0.05, and the dotted, horizontal lines (second row) represent
values of the Cramér-von Mises test statistic.
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Figure 3: A comparison of the max LM (solid line) and max LR (dashed line) test statistics
for (8) (i.e., k∗ = 19). The solid horizontal line corresponds to the critical value at α = 0.05
while the dotted vertical line highlights the threshold at which both test statistics assume
their maximum.

that the cumulative score process for the first and second loadings did not achieve the critical
value represents a Type II error, which implicitly brings into question the tests’ power. This
is an example of a situation where the double-max test “wastes” power, as it cannot make use
of the fact that multiple model parameters change simultaneously. We generally address the
issue of power in the simulations below.

6. Simulation

In this section, we conduct a simulation designed to examine the tests’ power and Type I
error rates in the context also employed for the previous example. We examine the power and
error rates of three tests: the double-max test, the Cramér-von Mises test, and the max LM
test. We also compare tests involving only the k∗ = 3 parameters that changed with tests
of all k∗ = k = 19 model parameters. The example implied that the former tests had more
power, and the simulations provide more detail on the extent to which the tests’ power levels
differ. Finally, we also examine the tests’ power across various magnitudes of measurement
invariance violations.
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Figure 4: Cumulative score processes for each verbal factor loadings, with critical values
stemming from the double-max test. The solid, horizontal lines correspond to the critical
value at α = 0.05.

6.1. Method

Data were generated analogously to the example section. The data were generated from a
factor analysis model with two correlated factor and six manifest variables, with individuals
with low V (13–15) having smaller factor loadings than individuals with large V (16–18).
Sample size and magnitude of measurement invariance violation were manipulated to examine
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Violation Magnitude (SE)
n k∗ Statistic 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

100 3 DM 3.0 4.1 8.0 15.8 26.1 41.6 55.8 65.9 71.5
CvM 4.8 6.3 12.7 25.7 44.1 65.0 79.8 88.5 90.9
max LM 4.8 6.5 10.8 20.2 33.9 53.5 70.5 81.9 85.6

19 DM 2.2 2.9 4.1 5.5 8.7 15.0 22.1 29.9 34.3
CvM 4.2 4.1 6.7 10.3 16.1 24.9 36.0 46.9 53.7
max LM 6.7 6.5 8.4 10.5 15.1 20.1 29.0 37.1 44.0

200 3 DM 3.1 4.8 9.4 17.1 32.1 48.6 67.8 83.4 93.2
CvM 5.0 6.7 13.7 26.4 46.7 69.4 85.4 94.5 98.6
max LM 4.8 6.5 10.8 19.9 38.1 59.4 79.2 91.4 97.5

19 DM 3.3 3.6 4.8 7.4 11.9 21.1 34.6 52.4 68.1
CvM 4.7 5.0 7.3 11.5 19.1 30.7 45.9 61.7 76.6
max LM 6.2 6.0 7.8 10.9 15.3 24.9 36.9 52.6 69.6

500 3 DM 4.2 5.4 10.0 20.2 34.8 52.0 71.4 87.1 94.7
CvM 4.9 7.1 12.4 27.7 47.7 68.8 85.9 95.3 98.9
max LM 4.9 6.7 10.1 21.2 39.0 61.1 80.9 93.5 98.2

19 DM 3.8 4.6 5.2 8.4 15.3 25.8 41.8 60.8 78.6
CvM 4.6 5.5 7.2 12.3 20.5 33.6 50.9 68.4 83.7
max LM 5.1 5.9 7.9 9.9 16.4 26.3 41.7 60.9 78.6

Table 1: Simulated power for three test statistics across three sample sizes n, nine magnitudes
of measurement invariance violations, and two subsets of tested parameters k∗. Abbreviations:
CvM = Cramér-von Mises test; max LM = Maximum Lagrange multiplier test; DM = Double-
max test. See Figure 5 for a visualization (using all 17 violation magnitudes).

power: we examined power to detect invariance violations across three sample sizes (n =
100, 200, 500) and 17 magnitudes of violations. These violations involved the younger students’
values of {λ11, λ21, λ31} deviating from the older students’ values by d times the parameters’
asymptotic standard errors (scaled by

√
n), with d = 0, 0.25, 0.5, . . . , 4. The 0-standard error

condition was used to study Type I error rate.

For each combination of sample size (n) × violation magnitude (d) × number of parameters
being tested (k∗), 5,000 datasets were generated and tested. In each dataset, half the indi-
viduals had “low V ” (e.g., 13–15 years of age) and half had “high V ” (e.g., 16–18 years of
age).

6.2. Results

Full simulation results are presented in Figure 5, and the underlying numeric values for a
subset of the results is additionally displayed in Table 1. In describing the results, we largely
refer to the figure.

Figure 5 displays power curves as a function of violation magnitude, with panels for each
combination of sample size (n) × number of parameters being tested (k∗). Separate curves
are drawn for the double-max test (solid lines), the Cramér-von Mises test (dashed lines),
and the max LM (dotted lines). One can generally observe that simultaneous tests of all
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Figure 5: Simulated power curves for the double-max test (solid), Cramér-von Mises test
(dashed), and max LM test (dotted) across three sample sizes n, two subsets of tested pa-
rameters k∗, and measurement invariance violations of 0–4 standard errors (scaled by

√
n).

See Table 1 for the underlying numeric values (using a subset of nine violation magnitudes).

19 parameters result in decreased power, with the tests performing more similarly at the
larger sample sizes. The tests distinguish themselves from one another when only the three
factor loadings are tested, with the Cramér-von Mises test having the most power, followed
by max LM , followed by the double-max test. This advantage decreases with increases in
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sample size. Table 1 presents the same results as Figure 5, but it is easier to see exact power
magnitudes in the table. The table shows that the power advantage of the Cramér-von Mises
test can be as large as 0.1, most notably when three parameters are being tested. It also shows
that the Cramér-von Mises test generally has true Type-I error rates, with the double-max
test being somewhat conservative and the max LM test being slightly liberal.

In summary, we found that the proposed tests have adequate power to detect measurement
invariance violations in applied contexts. The Cramér-von Mises statistic exhibited the best
performance for the data generated here, though more simulations are warranted to exam-
ine the generality of this finding in other models or other parameter constellations. In the
discussion, we describe extensions of the tests in factor analysis and beyond.

7. Discussion

In this paper, we have presented a new family of statistical tests for the study of measurement
invariance in psychometrics. The tests, based on stochastic processes, have reasonable power,
can isolate subgroups of individuals violating measurement invariance based on a continuous
auxiliary variable, and can isolate specific model parameters affected by the violation. In this
section, we consider the tests’ use in practice and their extension to more complex scenarios.

7.1. Use in practice

The proposed tests give researchers a new set of tools for studying measurement invariance.
For example, they give researchers the flexibility to: (1) simultaneously test all model param-
eters, yielding results relevant to many types of measurement invariance (see, e.g., Meredith
1993), or (2) test a single subset of model parameters, potentially leading to improved power
to detect a single type of measurement invariance. The traditional steps have involved hy-
pothesizing a specific type of invariance and then testing for it via a LR test, but this is
unnecessary under the proposed framework.

In addition to simultaneously testing different types of measurement invariance, the proposed
tests allow researchers to easily interpret the nature of the invariance violation. This is made
possible through the tests’ abilities to estimate ν, the threshold dividing individuals into
subgroups that violate measurement invariance. While a single ν was assumed in this paper,
it is also possible to define formal rules for estimating multiple ν parameters (see Zeileis et al.
2010). We plan to explore these issues in the future.

7.2. Categorical auxiliary variable

One issue that was largely unaddressed in this paper involved the use of categorical V to
study measurement invariance. In this case, groups are already specified in advance, and so
traditional methods for fixed subgroups (i.e., LR, Wald, and LM tests) may suffice. Further-
more, we can also obtain an LM-type statistic from the framework developed here. Assume
the observations are divided into C categories I1, I2, . . . , IC . Then, the increment of the cu-
mulative score process ∆IcB(θ̂) within each category is just the sum of the corresponding
scores. In somewhat sloppy notation:

∆IcB(θ̂) = Î−1/2n−1/2
∑
i∈Ic

s(θ̂;xi) (21)



18 Generalized Measurement Invariance Tests

This results in a C × k matrix, with one entry for each category-by-model parameter combi-
nation. We can test a specific model parameter for invariance by focusing on the associated
column of the C×k matrix and employing a weighted squared sum of the entries in the column
to obtain a χ2-distributed statistic with (C− 1) degrees of freedom (Hjort and Koning 2002).
Alternatively, to simultaneously test multiple parameters, we can sum the χ2 statistics and
degrees of freedom for the individual parameters. In addition to categorical V , this frame-
work may also be useful for both continuous V with many ties and ordinal V . The number of
potential thresholds may be very low in these situations, which impacts the extent to which
asymptotic results hold for the main test statistics described in this paper.

7.3. Extensions

The proposed family of tests can be extended in various ways. First, it is possible to construct
an algorithm that recursively defines groups of individuals violating measurement invariance
with respect to multiple auxiliary variables. Such an algorithm is related to classification
and regression trees (Breiman, Friedman, Olshen, and Stone 1984; Merkle and Shaffer 2011;
Strobl, Malley, and Tutz 2009), with related algorithms being developed for general parametric
models (Zeileis, Hothorn, and Hornik 2008) and Rasch models in particular (Strobl, Kopf,
and Zeileis 2010).

Relatedly, Sánchez (2009) describes a general method for partitioning/segmenting structural
equation models within a partial least squares framework. This method involves direct maxi-
mization of the likelihood ratio (i.e., fitting the model for various subgroups defined by V and
choosing the subgroups with the largest likelihood ratio). Thus, unlike the tests described in
this paper, this approach does not provide a formal significance test with a controlled level of
Type I errors.

The proposed tests also readily extend to other popular psychometric models. Instead of
studying measurement invariance in factor analysis, the tests can be used to generally study
the stability of structural equation model parameters across observations. For example, it
would be possible to assess whether paths between latent variables are stronger for some
individuals than for others. Secondly, the tests may be extended to study differential item
functioning (DIF) in item response models (e.g., Strobl et al. 2010, who focused on recur-
sive partitioning of Rasch models). Traditional DIF methods are similar to those for factor
analysis in that subgroups must be specified in advance. While factor-analytic measurement
invariance methods and DIF methods have developed largely independently of one another,
some treatments (McDonald 1999) and recent research (Stark, Chernyshenko, and Drasgow
2006) have sought to unify the methods. Extensions of the proposed tests can support this
endeavor.

7.4. Summary

We have outlined a family of stochastic process-based parameter instability tests from theo-
retical statistics and applied them to the issue of measurement invariance in psychometrics.
The paper included both theoretical development and study of the tests’ performance. The
tests were found to have good properties via simulation, making them useful for many psycho-
metric applications. More generally, the tests help solve standing problems in measurement
invariance research and provide many avenues for future research, both through extensions of
the tests within a factor-analytic context and through application of the tests to new models.
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Computational details

All results were obtained using the R system for statistical computing (R Development Core
Team 2011), version 2.12.2, employing the add-on packages lavaan 0.4-7 (Rosseel 2011) and
OpenMx 0.9.1-1421 (Boker, Neale, Maes, Wilde, Spiegel, Brick, Spies, Estabrook, Kenny,
Bates, Mehta, and Fox 2011) for fitting of the factor analysis models and strucchange 1.4-3
(Zeileis, Leisch, Hornik, and Kleiber 2002; Zeileis 2006) for evaluating the parameter in-
stability tests. R and the packages lavaan and strucchange are freely available under the
General Public License 2 from the Comprehensive R Archive Network at http://CRAN.

R-project.org/ while OpenMx is available under the Apache License 2.0 from http://

OpenMx.psyc.virginia.edu/. R code for replication of our results is available at http:

//semtools.R-Forge.R-project.org/.
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Abstract
The issue of measurement invariance commonly arises in factor-analytic contexts,
with methods for assessment including likelihood ratio tests, Lagrange multiplier
tests, and Wald tests. These tests all require advance definition of the number of
groups, group membership, and offending model parameters. In this paper, we con-
struct tests of measurement invariance based on stochastic processes of casewise
derivatives of the likelihood function. These tests can be viewed as generalizations
of the Lagrange multiplier test, and they are especially useful for: (1) isolating spe-
cific parameters affected by measurement invariance violations, and (2) identifying
subgroups of individuals that violated measurement invariance based on a conti-
nuous auxiliary variable. The tests are presented and illustrated in detail, along
with simulations examining the tests’ abilities in controlled conditions.
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