9 research outputs found

    Clay mineral diversity and abundance in sedimentary rocks of Gale crater, Mars.

    Get PDF
    Clay minerals provide indicators of the evolution of aqueous conditions and possible habitats for life on ancient Mars. Analyses by the Mars Science Laboratory rover Curiosity show that ~3.5-billion year (Ga) fluvio-lacustrine mudstones in Gale crater contain up to ~28 weight % (wt %) clay minerals. We demonstrate that the species of clay minerals deduced from x-ray diffraction and evolved gas analysis show a strong paleoenvironmental dependency. While perennial lake mudstones are characterized by Fe-saponite, we find that stratigraphic intervals associated with episodic lake drying contain Al-rich, Fe3+-bearing dioctahedral smectite, with minor (3 wt %) quantities of ferripyrophyllite, interpreted as wind-blown detritus, found in candidate aeolian deposits. Our results suggest that dioctahedral smectite formed via near-surface chemical weathering driven by fluctuations in lake level and atmospheric infiltration, a process leading to the redistribution of nutrients and potentially influencing the cycling of gases that help regulate climate

    Mineralogy of an ancient lacustrine mudstone succession from the Murray formation, Gale crater, Mars

    Get PDF
    The Mars Science Laboratory Curiosity rover has been traversing strata at the base of Aeolis Mons (informally known as Mount Sharp) since September 2014. The Murray formation makes up the lowest exposed strata of the Mount Sharp group and is composed primarily of finely laminated lacustrine mudstone intercalated with rare crossbedded sandstone that is prodeltaic or fluvial in origin. We report on the first three drilled samples from the Murray formation, measured in the Pahrump Hills section. Rietveld refinements and FULLPAT full pattern fitting analyses of X-ray diffraction patterns measured by the MSL CheMin instrument provide mineral abundances, refined unit-cell parameters for major phases giving crystal chemistry, and abundances of X-ray amorphous materials. Our results from the samples measured at the Pahrump Hills and previously published results on the Buckskin sample measured from the Marias Pass section stratigraphically above Pahrump Hills show stratigraphic variations in the mineralogy; phyllosilicates, hematite, jarosite, and pyroxene are most abundant at the base of the Pahrump Hills, and crystalline and amorphous silica and magnetite become prevalent higher in the succession. Some trace element abundances measured by APXS also show stratigraphic trends; Zn and Ni are highly enriched with respect to average Mars crust at the base of the Pahrump Hills (by 7.7 and 3.7 times, respectively), and gradually decrease in abundance in stratigraphically higher regions near Marias Pass, where they are depleted with respect to average Mars crust (by more than an order of magnitude in some targets). The Mn stratigraphic trend is analogous to Zn and Ni, however, Mn abundances are close to those of average Mars crust at the base of Pahrump Hills, rather than being enriched, and Mn becomes increasingly depleted moving upsection. Minerals at the base of the Pahrump Hills, in particular jarosite and hematite, as well as enrichments in Zn, Ni, and Mn, are products of acid-sulfate alteration on Earth. We hypothesize that multiple influxes of mildly to moderately acidic pore fluids resulted in diagenesis of the Murray formation and the observed mineralogical and geochemical variations. The preservation of some minerals that are highly susceptible to dissolution at low pH (e.g., mafic minerals and fluorapatite) suggests that acidic events were not long-lived and that fluids may not have been extremely acidic (pH>2). Alternatively, the observed mineralogical variations within the succession may be explained by deposition in lake waters with variable Eh and/or pH, where the lowermost sediments were deposited in an oxidizing, perhaps acidic lake setting, and sediments deposited in the upper Pahrump Hills and Marias Pass were deposited lake waters with lower Eh and higher pH

    Mars Science Laboratory CheMin Data From the Glen Torridon Region and the Significance of Lake-Groundwater Interactions in Interpreting Mineralogy and Sedimentary History

    No full text
    The Glen Torridon (GT) region in Gale crater, Mars is a region with strong clay mineral signatures inferred from orbital spectroscopy. The CheMin X-ray diffraction (XRD) instrument onboard the Mars Science Laboratory rover, Curiosity, measured some of the highest clay mineral abundances to date within GT, complementing the orbital detections. GT may also be unique because in the XRD patterns of some samples, CheMin identified new phases, including: (a) Fe-carbonates, and (b) a phase with a novel peak at 9.2 Å. Fe-carbonates have been previously suggested from other instruments onboard, but this is the first definitive reporting by CheMin of Fe-carbonate. This new phase with a 9.2 Å reflection has never been observed in Gale crater and may be a new mineral for Mars, but discrete identification still remains enigmatic because no single phase on Earth is able to account for all of the GT mineralogical, geochemical, and sedimentological constraints. Here, we modeled XRD profiles and propose an interstratified clay mineral, specifically greenalite-minnesotaite, as a reasonable candidate. The coexistence of Fe-carbonate and Fe-rich clay minerals in the GT samples supports a conceptual model of a lacustrine groundwater mixing environment. Groundwater interaction with percolating lake waters in the sediments is common in terrestrial lacustrine settings, and the diffusion of two distinct water bodies within the subsurface can create a geochemical gradient and unique mineral front in the sediments. Ultimately, the proximity to this mixing zone may have controlled the secondary minerals preserved in sedimentary rocks exposed in GT

    The Conformity of the Goods to the Contract in International Sales

    No full text

    DISSOLUTION RATES OF ALLOPHANE WITH VARIABLE Fe CONTENTS: IMPLICATIONS FOR AQUEOUS ALTERATION AND THE PRESERVATION OF X-RAY AMORPHOUS MATERIALS ON MARS

    No full text
    corecore