27 research outputs found

    Evaluation of the Effectiveness of Foot-and-Mouth Disease Vaccination of Animals in the Buffer Zone of the Republic of Armenia in 2016–2020

    Get PDF
    BACKGROUND: Foot-and-mouth disease (FMD) is a high impact viral disease of livestock for which vaccines are extensively used for limiting the spread of infection. Armenia shares a border with both Turkey and Iran where FMD is endemic, making vaccination an important component of Armenia\u27s control strategy. Additionally, Armenian veterinary services utilize both passive and active monitoring for prevention control. METHODS: We sought to determine the immune status of animals vaccinated against FMD and to evaluate the effectiveness of our vaccination policy in Armenia. This was conducted in three regions including Shirak, Armavir, and Ararat Region which are located in the buffer zones that border Turkey and Iran. Through active monitoring in 2020, we studied blood serum samples from cattle and sheep using an enzyme immunoassay to determine the level of immune animals in these regions following the use of a polyvalent inactivated vaccine containing FMDV serotypes A, O, and Asia-1 that are relevant for this region. ELISA titers were assessed at 28, 90, and 180 days after vaccination in cattle of three age groups at the time of initial vaccination: 4-6 months, 6-18 months and ≥ 24 months of age with sheep of all ages. RESULTS: The 3 age groups of cattle had similarly high levels of immunity with over 90% of the cattle showing a ≥ 50% protective titer 28 days after the first vaccination. By day 90, titers in cattle from the initial 4-18-month age groups dropped below 58% across the 3 serotypes and at or below 80% for the oldest cattle ≥ 24 months. Re-vaccination of cattle at 120 days did improve protective titers but never reached the level of immunity of the first vaccination. Sheep showed a similar rapid drop to less than 50% having a ≥ 50% protective titer at 90 days emphasizing the need for continual revaccination. CONCLUSIONS: The results of this study have important implications for the current FMD vaccine policy in Armenia and improves our understanding of the rapid loss of protective titers over short periods. Since small ruminants are only vaccinated once per year and vaccination titers drop rapidly by 90 days suggests that they are vulnerable to FMD and that vaccination protocols need to be updated. Cattle should continue to be vaccinated every 3-6 months depending on their age to maintain a protective level of antibodies to protect them from FMD. More studies are needed to understand the possible role of small ruminants in the epidemiology of FMD and to evaluate revaccination at shorter intervals. These results show the concerns of rapid loss of protection to both cattle and small ruminants following 1 or more doses of commercial vaccines and that additional vaccines need to be evaluated in both groups to know how often they must be vaccinated to provide full protection. The addition of challenge studies should also be considered to better understand the level of protection as measured by serology and how it relates to protection from challenge. These results should be considered by anyone using these vaccines in cattle and sheep at longer than 3 month intervals

    Evaluation of the antigenic relatedness and cross-protective immunity of the neuraminidase between human influenza A (H1N1) virus and highly pathogenic avian influenza A (H5N1) virus

    Get PDF
    AbstractTo determine the genetic and antigenic relatedness as well as the cross-protective immunity of human H1N1 and avian H5N1 influenza virus neuraminidase (NA), we immunized rabbits with either a baculovirus-expressed recombinant NA from A/Beijing/262/95 (BJ/262) H1N1 or A/Hong Kong/483/97 (HK/483) H5N1 virus. Cross-reactive antibody responses were evaluated by multiple serological assays and cross-protection against H5N1 virus challenge was evaluated in mice. In a neuraminidase inhibition (NI) test, the antisera exhibited substantial inhibition of NA activity of the homologous virus, but failed to inhibit the NA activity of heterologous virus. However, these antisera exhibited low levels of cross-reactivity measured by plaque size reduction, replication inhibition, single radial hemolysis, and ELISA assays. Passive immunization with HK/483 NA-specific antisera significantly reduced virus replication and disease, and afforded almost complete protection against lethal homologous virus challenge in mice. However, passive immunization with BJ/262 (H1N1) NA-specific antisera was ineffective at providing cross-protection against lethal H5N1 virus challenge and only slightly reduced weight loss. Substantial amino acid variation among the NA antigenic sites was observed between BJ/262 and HK/483 virus, which was consistent with the lack of cross-reactive NI activity by the antibody and limited cross-protective immunity in mice. These results show a strong correlation between the lack of cross-protective immunity and low structural similarities of NA from a human seasonal H1N1 virus and an avian H5N1 influenza virus

    Transmission of Avian Influenza A Viruses among Species in an Artificial Barnyard

    Get PDF
    Waterfowl and shorebirds harbor and shed all hemagglutinin and neuraminidase subtypes of influenza A viruses and interact in nature with a broad range of other avian and mammalian species to which they might transmit such viruses. Estimating the efficiency and importance of such cross-species transmission using epidemiological approaches is difficult. We therefore addressed this question by studying transmission of low pathogenic H5 and H7 viruses from infected ducks to other common animals in a quasi-natural laboratory environment designed to mimic a common barnyard. Mallards (Anas platyrhynchos) recently infected with H5N2 or H7N3 viruses were introduced into a room housing other mallards plus chickens, blackbirds, rats and pigeons, and transmission was assessed by monitoring virus shedding (ducks) or seroconversion (other species) over the following 4 weeks. Additional animals of each species were directly inoculated with virus to characterize the effect of a known exposure. In both barnyard experiments, virus accumulated to high titers in the shared water pool. The H5N2 virus was transmitted from infected ducks to other ducks and chickens in the room either directly or through environmental contamination, but not to rats or blackbirds. Ducks infected with the H7N2 virus transmitted directly or indirectly to all other species present. Chickens and blackbirds directly inoculated with these viruses shed significant amounts of virus and seroconverted; rats and pigeons developed antiviral antibodies, but, except for one pigeon, failed to shed virus

    Accumulation of H5N2 (A) and H7N3 (B) viruses in barnyard pool water.

    No full text
    <p>Water samples skimmed from the surface of the pool, off the bottom (sediment-rich) or splashed onto the floor were assayed for infectious virus by plaque assay on MDCK cells.</p

    Survival of H5N2 and H7N3 viruses added to duck pool water and maintained at ambient temperature.

    No full text
    <p>Water from a pool used by non-infected ducks was spiked with virus, sampled over time and assayed by plaque assay on MDCK cells.</p

    Seroconversion following virus exposure in directly-inoculated (caged) and contact (barnyard) animals.

    No full text
    <p>*HAI titer ≥10 were considered positive.</p>§<p>Number of birds positive/total (% positive) at any one timepoint from days 14, 21, or 28.</p

    Barnyard room layout observed during the day (A) and at night (B).

    No full text
    <p>Barnyard room layout observed during the day (A) and at night (B).</p

    Virus shedding from inoculated and contact ducks.

    No full text
    <p>*Swab samples are cloacal (CLO) or oropharygeal (OP).</p>§<p>Numbers represent days post challenge.</p
    corecore