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a b s t r a c t

To determine the genetic and antigenic relatedness as well as the cross-protective immunity of human H1N1
and avian H5N1 influenza virus neuraminidase (NA), we immunized rabbits with either a baculovirus-
expressed recombinant NA from A/Beijing/262/95 (BJ/262) H1N1 or A/Hong Kong/483/97 (HK/483) H5N1 virus.
Cross-reactive antibody responses were evaluated by multiple serological assays and cross-protection against
H5N1 virus challenge was evaluated in mice. In a neuraminidase inhibition (NI) test, the antisera exhibited
substantial inhibition of NA activity of the homologous virus, but failed to inhibit the NA activity of
heterologous virus. However, these antisera exhibited low levels of cross-reactivity measured by plaque size
reduction, replication inhibition, single radial hemolysis, and ELISA assays. Passive immunization with HK/483
NA-specific antisera significantly reduced virus replication and disease, and afforded almost complete
protection against lethal homologous virus challenge in mice. However, passive immunization with BJ/262
(H1N1) NA-specific antisera was ineffective at providing cross-protection against lethal H5N1 virus challenge
and only slightly reduced weight loss. Substantial amino acid variation among the NA antigenic sites was
observed between BJ/262 and HK/483 virus, which was consistent with the lack of cross-reactive NI activity by
the antibody and limited cross-protective immunity in mice. These results show a strong correlation between
the lack of cross-protective immunity and low structural similarities of NA from a human seasonal H1N1 virus
and an avian H5N1 influenza virus.

Published by Elsevier Inc.

Introduction

Neuraminidase (NA) and hemagglutinin (HA) are two surface
glycoproteins of influenza A viruses. The HA functions as the receptor
binding and membrane fusion protein as well as serving as the target
for viral neutralizing antibodies (Wilson and Cox, 1990). The best
understood role of the enzyme activity of NA is during the final stage
of infection; NA cleaves sialic acid from the viral envelope, thus
allowing release of progeny viruses from the host cell and preventing
virus aggregation (Palese et al., 1974; Seto and Rott, 1966). The role of
NA at the early stages of infection has also been proposed; NA may
catalyze removal of “decoy” receptors on mucins, cilia, and cellular
glycocalyx present on the human airway epithelium to promote access
to target cells (Matrosovich et al., 2004). In vitro, anti-NA antibodies do
not fully neutralize virus infectivity; however they can reduce viral

yield (Kilbourne et al., 1968). Similarly, in animals, anti-NA antibodies
are infection permissive, but NA-specific antibodies can reduce illness
by diminishing viral replication and lung pathology (Johansson et al.,
1989; Schulman et al., 1968). In humans, anti-NA antibodies induced
by natural infection and/or immunization appear to attenuate clinical
illness following subsequent exposures to influenza viruses containing
the same or antigenically closely related NA (Beutner et al., 1979;
Couch et al., 1974; Monto and Kendal, 1973; Murphy et al., 1972; Smith
and Davies, 1976). Thus, anti-NA antibodies may modify the virulence
and the epidemiological impact of influenza.

The three-dimensional structure of 7 of 10 known NA subtypes of
influenza A viruses (N1, N2, N4, N5, N8, N9, and N10) and influenza B
virus have been determined (Baker et al., 1987; Burmeister et al.,
1992; Collins et al., 2008; Li et al., 2010, 2012; Russell et al., 2006;
Varghese et al., 1983; Wang et al., 2011; Xu et al., 2008; Zhu et al.,
2012). The overall structures of these NAs are very similar. Each
NA monomer contains the catalytic site surrounded by multiple
hypervariable loops accessible to antibodies. A total of 8 upper surface
loops have been defined as antigenic regions by X-ray crystallographic
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analysis of one N2 and two N9 NA-antibody complexes; each antibody
epitope consists of about four loops located at the rim of the enzyme
active site (Colman et al., 1987; Malby et al., 1994; Venkatramani et al.,
2006). Amino acid changes in these loops were previously observed in
laboratory-derived escape mutants selected with mouse monoclonal
antibodies (mAb) that inhibit NA activity of human influenza H2N2
and H3N2 viruses (Air et al., 1985; Gulati et al., 2002; Lentz et al.,
1984). Similarly, amino acid substitutions in theses loops occurred
naturally among viruses of the same subtype (Air et al., 1985; Colman
et al., 1983; Shil et al., 2011; Xu et al., 1996), suggesting that these
upper surface loops are antigenically and epidemiologically important
for human H2N2 and H3N2 viruses and likely induce NA inhibition
(NI) antibodies. However, until recently the antigenic determinants for
N1 have not been widely studied or assessed (Wan et al., 2013).

Historically, H1N1 descendants of the 1918 pandemic virus
circulated in humans through the 20th century and into the early
21st century resulting in over 20 epidemics between 1933–1957 and
1977–2009 (Centers for Disease Control and Prevention, 2010a;
Francis, 1953; Katz et al., 2011; Tumpey et al., 2005). In 2009, an
H1N1 virus emerged from North American swine to infect humans
and possessed an NA gene segment from the Eurasian swine genetic
lineage (Garten et al., 2009). Thus, most current day adults have
varying levels of anti-N1 antibodies as a result of natural infection
and/or vaccination with H1N1 viruses (Couch et al., 2013; Powers
et al., 1996).

There is considerable concern that highly pathogenic avian
influenza (HPAI) H5N1 viruses could develop the capacity to
spread among humans and cause a major pandemic (WHO,
2013). The NAs of currently circulating H5N1 viruses and human
H1N1 viruses are classified in the same NA subtype and low levels
of anti-NA cross-reactive antibodies to H5N1 viruses have been
detected in human sera of unexposed humans (Frobert et al., 2010;
Sandbulte et al., 2007). However, the systematic evaluation of the
antigenic and cross-protective immunity of the NAs between
influenza H1N1 and H5N1 viruses is understudied.

It has been demonstrated that recombinant NA (rNA) produced
by a baculovirus expression system is enzymatically functional and
antigenically indistinguishable to virion NA (Johansson et al., 1995).
Baculovirus-expressed rNA protein is properly folded, as confirmed by
crystallization and structural analysis (Xu et al., 2008; Zhu et al., 2012).
Moreover, rNA vaccines can induce NI antibodies that suppress viral
replication and disease in mice (Deroo et al., 1996; Kilbourne et al.,
2004). To evaluate the antigenic relationship of the NAs from human
seasonal H1N1 and avian H5N1 viruses and to determine whether
antibodies induced by N1 NA can provide cross-protective immunity
against H5N1 virus in mice, antisera were generated by immuniza-
tions of rabbits with baculovirus-expressed rNA prepared from
A/Beijing/262/95 (BJ/262) H1N1 virus or A/Hong Kong/483/97(HK/
483) H5N1 virus. We compared results obtained from five different
immunological assays for detecting anti-NA cross-reactive antibodies
to H5N1 viruses. The amino acid sequence differences and similarities
in the potential NA antigenic sites between the subtype viruses were
also determined. Our results indicate that the antibodies induced by
BJ/262 rNA afforded very limited cross-reactivity in vitro and cross-
protection in vivo against H5N1 virus, which is consistent with the
differences in their antigenic structures evaluated in this study.

Results

Antigenic relatedness between the NA of H1N1 and H5N1 viruses

Cross-reactive anti-NA antibody responses were evaluated by
NI, RI, PSR, SRH, and ELISA assays using Rα raised against rNA
protein from BJ/262 (H1N1) or HK/483 (H5N1) virus. Both rNA
proteins generated detectable titers of anti-NA antibodies against

homologous virus (Table 1). In NI tests, Rα to BJ/262 NA (Rα–BJ/
262) showed substantial inhibition of NA activity of the homo-
logous virus, but failed to inhibit the NA activity of HK/483 virus.
In RI and PSR assays, Rα–BJ/262 showed substantial inhibition of
BJ/262 and HK/483 viral replication in MDCK cells, but inhibition
of HK/483 virus replication was 8- to 12-fold lower compared to
that observed against homologous virus. In the SRH assay, Rα–BJ/
262 only caused partial hemolysis of a small proportion of HK/483
virus-coated RBC cells (Table 1). Finally, vaccination with either
of the rNA proteins induced substantial ELISA (IgG) antibody
responses; however, titers against heterologous rNA protein were
4- to 8-fold lower than titers measured to homologous rNA
(Table 1). Taken together these results demonstrate that although
antisera to rNA from H5N1 or H1N1 virus generated detectable
cross-reactive anti-NA antibodies, they exhibited poor inhibition of
NA activity and viral replication.

In vivo cross-protective immunity of the antibodies induced by BJ/262
rNA

Next, we evaluated whether the cross-reactive antibodies
induced by BJ/262 rNA could offer some level of cross-protection
against H5N1 virus in mice. In the first challenge experiment, mice
were injected i.p. with one dose of 0.5 ml of sera 24 h prior to
challenge with 5 LD50 of HK/483 virus. All mice that received
either Rα–BJ/262 or NRS (control) died within 8 days p.i. whereas
2 of 3 mice that received homologous Rα–HK/483 survived (data
not shown). These data indicated that a single passive immuniza-
tion of Rα–BJ/262 failed to provide any cross-protection against a
lethal H5N1 virus challenge.

In the second challenge experiment, mice were passively
immunized with three doses of anti-NA sera or NRS as the
negative control. The first dose of 1 ml of sera was given 24 h
prior to challenge with 3 LD50 of HK/483 virus; the second and the
third doses of 0.5 ml of sera were given 2 and 5 days p.i. As a
positive control, an additional group of mice received 0.2 ml i.p. of
Rα to VN/1203 (H5) rHA (homologous HI titer¼2560) 24 h before
challenge. All mice that received anti-H5 rHA were substantially
protected against weight loss and survived HK/483 virus challenge
(Fig. 1A and B). These mice also displayed significantly lower virus
titers in lung and brain tissues compared to NRS-treated control
mice (Fig. 1C). Mice that received homologous antisera to H5N1 NA
(Rα–HK/483) also displayed some level of protection against H5N1
challenge; the majority (86%) of Rα–HK/483-treated mice survived
challenge and exhibited significantly less weight loss (po0.05)
compared to NRS-treated control mice (Fig. 1A and B). Moreover,
passive immunization of Rα–HK/483 rNA resulted in at least 3000-
fold less virus in lung tissues and over 100-fold less virus in brain
tissues compared to that of NRS-treated mice (po0.05). However,
passive immunizations with three doses of Rα–BJ/262 (H1N1)
failed to provide cross-protection against death and only slightly
reduced weight loss early during the course of H5N1 virus
infection (Fig. 1A and B). The antiserum was also ineffective at
significantly reducing virus replication in lung and brain tissues
(Fig. 1C). These data demonstrated that the antibodies induced by
BJ/262 rNA afforded very limited cross-protective immunity
against HK/483H5N1 virus even in mice treated with multiple
doses of antiserum and challenged with a lower lethal dose of
virus (3 LD50).

Amino acid comparisons of the NA antigenic sites between avian
H5N1 and human H1N1 viruses isolated between 1934 and 2007

We performed a comprehensive sequence comparison of a panel
of epidemiologically important influenza viruses and focused on
residues in the globular head of NA believed to be antigenic
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determinants (Colman et al., 1983). The NA crystal structure of the
1918 H1N1 virus has allowed for a more detailed analysis of the
amino acids that make up the loop regions as well as its structural
comparison with H5N1 NA (Xu et al., 2008). We aligned the NA
sequences of 11 viruses isolated from major influenza H1N1 epi-
demics between 1934 and 2007 (Centers for Disease Control and
Prevention, 2010a; Francis, 1953), and located the changed residues
in the N1 three-dimensional structure. On the basis of their acces-
sibility to antibodies, and their distance to the catalytic site, 20 amino
acids were identified as potential key contributors to interactions
with antibodies. These sites cluster preferentially into seven upper
surface loops (195–202, 216–231, 243–251, 316–353, 364–374,
398–407, and 428–439). Table 2 presents these loops with the amino

acid substitutions of the H1N1 viruses and Fig. 2 provides a cartoon
representation of the key 20 amino acids (N2 numbering) along with
the seven loops denoted in different colors. These potential antigenic
sites form a nearly continuous surface across the top of the NA
monomer, encircling the catalytic site pocket (shown in yellow).

Next, we compared the genetic similarities between H5N1 influ-
enza viruses circulating in avian populations since 1997 and seasonal
H1N1 viruses circulating in humans between 1934 and 2007. Despite
the existence of multiple clades based on HA phylogeny, the N1 NAs of
avian H5N1 viruses do not exhibit progressive antigenic drift in the
same way as the NA of human seasonal H1N1 viruses; only minor
amino acid variations in these sites were observed (Table 2). The key
amino acids within the potential antigenic sites of HK/483 and BJ/262
NA are visualized in the N1 structure showing differences and
similarities (Fig. 3). The monomeric N1 structure revealed substantial
differences in residue side chain composition between the H1N1 and
the H5N1 viruses; only 3 amino acids located on 3 of the NA surface
loops were identical (shown in red). The existence of distinct antigenic
differences among the NA of the two subtype viruses most certainly
accounted for the lack of cross-NI activity and cross-protection
observed in mice.

Discussion

Genetic variations of the HA and NA are responsible for the
appearance of epidemic and pandemic influenza viruses. The
antigenic changes in the HA and NA occur independently in nature
and the NA evolves at a slower rate than HA (Kilbourne et al.,
2002). Although protective immunity to influenza is largely
mediated by anti-HA antibodies, anti-NA antibodies may play a
significant role during influenza epidemics and pandemics when
major drift or shift in HA occurred without concomitant significant
antigenic changes of the NA (Beutner et al., 1979; Brett and
Johansson, 2005; Johansson, 1999; Kilbourne et al., 2002; Monto
and Kendal, 1973; Murphy et al., 1972). As H5N1 virus remains a

Table 1
Antigenic differences between NAs of BJ/262 and HK/483 viruses.

Assays Antigens Antibody titersa NRS

Rα–BJ/262 Rα–HK/483

NI BJ/262 virus 320b r10 r10
HK/483 virus r10 320 r10

RI BJ/262 virus 160 10 r10
HK/483 virus 20 80 r10

PSR BJ/262 virus 2560 100 r100
HK/483 virus 200 1280 r100

SRH BJ/262 virus 194 n.d n.d
HK/483 virus 88ph 170 n.d

ELISA IgG BJ/262 rNA 102,400 12,800 r100
HK/483 rNA 25,600 102,400 r100

ph: partial hemolysis; n.d: not detectable.
a Rabbits were immunized with 4 doses of 100 mg of BJ/262 rNA or HK/483 rNA

plus Titermax adjuvant at 1 month interval, and blood was collected 1 month after
the last immunization. Normal rabbit serum (NRS) was used as a negative control.

b All samples were tested in duplicate or triplicate in the each assay.
The homologous titers are underlined.

Fig. 1. Protective efficacy of influenza anti-NA antibodies against HK/483 (H5N1) virus challenge in mice. Mice (10/group) were passively immunized i.p with three doses of
Rα–BJ/262 (▴), Rα–HK/483 (♦), or NRS (●) as a negative control. Animals were given the first dose of sera (1 ml/mouse) 24 h before challenge with 3 LD50 (¼ 102.3 EID50) of a
HK/483 virus; the second and the third doses of sera (0.5 ml/mouse) were given at 2 and 5 days p.i. The mice that received one dose of 0.2 ml of Rα–VN/1203 (H5) rHA (■)
were used as positive controls. Mice were observed daily for weight loss (A) and survival (B) for 14 days. Virus titers in lungs and brains (C) were determined 6 days p.i. and
are expressed as the log10 EID50/ml7S.D. of 3 mice per group. *po0.05 compared to NRS group.
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persistent threat to public health, we wanted to determine whether
seasonal N1 induced anti-NA cross-reactive antibodies and protec-
tion against H5N1 virus. Overall, these results demonstrated that
influenza H1N1 BJ/262 NA-specific antibodies afforded little to no

cross-protective immunity against HK/483 H5N1 virus. A detailed
comparison of the amino acid sequences and NA structures identified
differences in putative antigenic sites between the two NA proteins.

The H1N1 subtype virus was first isolated from humans in 1933
and persisted in humans until 1957, followed by its re-emergence
in 1977 (Kendal et al., 1979; Smith et al., 1933). At the time of its
disappearance in 2009, a novel swine-origin H1N1 virus emerged
in North America and continues to spread globally (Centers for
Disease Control and Prevention, 2010b). Although H1N1 subtype
viruses have caused multiple epidemics between 1933 and 2009
(Centers for Disease Control and Prevention, 2010a; Francis, 1953),
the antigenic mapping of the N1 NAs have not been well studied.
As a consequence of antibody selection in the human population,
the H1N1 NAs showed progressive genetic changes since 1934,
which has provided a unique opportunity for mapping amino acid
substitutions in putative antigenic sites using epidemiologically
important influenza viruses. Very recently, Wan et al. mapped
antigenic domains of the N1 NA and identified N1 residues that are
essential for binding of cross-reactive mouse monoclonal antibo-
dies (Wan et al., 2013). Using data from previously published
reports, we identified 20 amino acid residues on the seven upper
surface loops of the N1 NA, which are mapped onto potential
antigenic sites. These sites contain NA mutations found in 11 H1N1
influenza viruses that circulated in humans between 1934 and
2009. These amino acid changes are presumably accessible to anti-
NA antibodies and hence, most likely to be selected by human
anti-H1N1 NA antibodies. Interestingly, X-ray crystallographic
analysis of N2 and N9 and NI-antibody complexes demonstrated
similar antigenic sites (Colman et al., 1987; Malby et al., 1994;
Venkatramani et al., 2006). NA antibody epitopes have also been
identified by the use of escape mutants selected with mouse mAbs
against N2, N8, N9 and/or influenza B NAs (Air et al., 1985, 1990a,
1990b; Gulati et al., 2002; Lentz et al., 1984; Saito et al., 1994; Tulip
et al., 1991; Webster et al., 1987), and in H2N2/H3N2 virus escape
mutants selected with human anti-N2 antibodies (Colman et al.,
1983; Shil et al., 2011; Xu et al., 1996). In accordance with the

Table 2
Amino acid differences and similarity in antigenic sites of the NAs between human H1N1 and HPAI H5N1 viruses.

N1 numbering
N2 numbering

195–202 216–231 243–251 316–353 364–374 398–407 428–439

200 220 222 248 249 250 329 332 336 339 344 365 366 367 369 396 430 432 434 435
199a,b 219 221a,b 247 248a 249a 329a,b 332 339a 342b 347a 368a,b 369a,b 370a,b 372b 400a,b 430b 432a,b 434a 435a,b

Human H1N1 viruses
PR/8/34 N R K D G L E T G Y N H S S H M R K K –

Marton/1943 D R E G G P K K G Y N N S S Q V R K K –

FM/1/47 D R E G G P K K G Y N N S S Q V R K N –

Netherlands/1953 D R Q D G P K K D N D N S S K M R R K Td

USSR/90/77 D R Q D G P K K D N D N S S K M R R K T
Chile/1/83 D R R N G P K K D T D N S S K M R R K T
Taiwan/1/86 N K R N G P K E N T D N S S K M R R Nc T
Texas/36/1991 N K R N G A K E N T D N R L K M R R Nc T
Beijing/262/95 N K R N G A K E N T D N R L K M R R Nc T
New Caledonia/99 N K R N G A K E N T D N R L K I L R Nc T
Brisbane/59/07 N K Q N K A E E N T N N R L K I L R Nc T

Avian H51N1 viruses
HK/483/97 N R N N E Q N T G S Y T S S S V R K K –

Vietnam/1203/04 N R N N G Q N T G S Y T N S S I R K S –

Indonesia/5/05 N R D N G Q N T G S Y T N S S I R K S –

Anhui/1/05 N R N N G Q N T G S Y T N S S I R K S –

Turkey/15/06 N R N S G Q N T G S Y T N S S I R K S –

Hubei/1/10 N R N N G Q N K G S Y T H S S I R K S –

HK/7032/12 N R N N G Q N T G S Y T H S S I R K S –

a Amino acid variations within putative antigenic sites among human H2N2 and/or H3N2 field strains (Colman et al., 1983; Air et al., 1985; Xu et al., 1996; Shil et al., 2011).
b The sites were identified by genetic analysis of escape mutants isolated in the presence of mouse mAbs against N2 (Lentz et al., 1984; Air et al., 1985; Gulati et al., 2002), N8 (Saito

et al., 1994), N9 (Webster et al., 1987; Air et al., 1990b; Tulip et al., 1991), or influenza B NA (Air et al., 1990a).
c Glycosylation sites (NXS/T).
d Amino acid insertion at this residue.

Fig. 2. Location of the potential antigenic sites of NAs of human H1N1 viruses
isolated between 1934 and 2007 on the N1 NA three-dimensional structure. A total
of 20 amino acids (N2 numbering) in the seven loops denoted in different colors
(orange for 199, green for 219 and 221, magenta for 247–249, red for 329, 332, 339,
342 and 347, blue for 368, 369, 370 and 372, hot pink for 400, and deep teal for 430,
432, 434 and 435) are depicted on the upper NA globular head in carton model. The
amino acid residues in the enzyme active site are represented as yellow sticks.

X. Lu et al. / Virology 454-455 (2014) 169–175172



observation that all of the laboratory escape mutants can only be
selected by mAbs that completely inhibit NA enzyme activity
(Gulati et al., 2002; Webster et al., 1987), these antigenic sites
are likely important for NI antibody recognition. Our data, along
with other previously published work (Gulati et al., 2002; Saito
et al., 1994; Webster et al., 1987) suggest that the location of NI
antibody epitopes appear to be similar among different subtypes
of influenza A viruses.

NA activity is essential for efficient influenza virus replication
(Palese et al., 1974; Matrosovich et al., 2004). In the current study,
the presence of HK/483 NA antibodies, containing a high level of
NI antibodies to H5N1 virus, significantly reduced homologous
virus replication in MDCK cells and in mouse tissues. Although low
levels of cross-reactive antibodies against HK/483 virus were
detected in Rα–BJ/262 by PSR, RI, SRH and ELISA assays, passive
immunization with Rα–BJ/262 failed to protect mice from lethal
H5N1 virus challenge. The lack of cross-reactive NI antibodies
(with either rabbit serum) suggests that the protective immunity
against homologous virus is mainly mediated by NI antibodies,
consistent with previous reports (Johansson et al., 1998; Rott et al.,
1974; Sylte et al., 2007; Webster et al., 1988). Thus, it is unlikely
that the low levels of cross-reactive antibodies against H5N1 NA
(detected in Rα BJ/262 by PSR, RI, SRH and ELISA assays) are
binding to the globular NA head domains due to their inability to
inhibit the NA activity. The lack of a cross-reactive NI antibody and
cross-protection between HK/483 and BJ/262 viruses may be
related to the absence of sufficient conservation in the NA
antigenic structure as suggested by structural studies of NA-
antibody interactions (Colman et al., 1987; Malby et al., 1994;
Venkatramani et al., 2006).

A protective NI titer is not clearly defined in humans. However,
multiple studies suggest that high levels of NI activity against
the infecting viruses are needed to provide clinical protection in
humans (Beutner et al., 1979; Kilbourne et al., 1995), in mice (Chen
et al., 2000) and in chickens (Sylte et al., 2007). Although low
levels of anti-H5N1 NA antibodies were detected in a small
proportion of human sera (Frobert et al., 2010; Sandbulte et al.,
2007) it is unclear whether they would be sufficient enough for
providing cross-protection against H5N1 infection. In humans, the
majority of H5N1 virus-infected cases are children and young
adults many of whom likely have cross-reactive anti-N1 antibodies

induced by seasonal H1N1influenza infection. This suggests that
such anti-N1 antibodies may be irrelevant in the face of a severe
H5N1 virus infection, which is consistent with a study demon-
strating that immunization with the 2006–2007 seasonal trivalent
inactivated influenza vaccine failed to induce anti-N1 cross-pro-
tection antibodies in humans (Frobert et al., 2010).

We observed a correlation between the lack of cross-protective
immunity and low structural similarities between BJ/262 NA and
HK/483 NA. Although these NAs are classified in the same N1
serotype, amino acid sequence similarity of NAs between them
demonstrated a distant (83% identical) evolutionary relationship.
Further comparison of the 20 potential antigenic sites showed that
only 3 (15%) sites were shared between BJ/262 NA and HK/483 NA.
Due to increasing population immunity to H1N1pdm09 since the
2009 pandemic, additional work is needed to determine whether
antibodies induced by contemporary N1 NA can provide cross-
protective immunity against H5N1 virus.

Materials and methods

Viruses

Influenza A viruses used in this study were A/Hong Kong/483/
97 (HK/483) H5N1 virus and A/Beijing/262/95 (BJ/262) human
H1N1virus. Virus stocks were propagated in the allantoic cavity of
10-day-old embryonated chicken eggs under conditions that were
found to be optimal for virus replication of HK/483 (37 1C, 26 h) or
BJ/262 (35 1C, 48 h). Virus stocks were divided into aliquots and
stored at �80 1C until use. Inactivated HK/483 virus was prepared
by adding 0.1% β-propiolactone (Sigma, St. Louis, MO) to allantoic
fluid and then incubating the mixture at 4 1C overnight.

Virus titrations

The hemagglutination assay was performed with 0.5% turkey
red blood cells (TRBC) to quantify viral particles and hemaggluti-
nation units (HAU) were expressed as the reciprocal of the highest
dilution of virus showing complete hemagglutination (Kendal
et al., 1982). Fifty percent egg infectious dose (EID50) and 50%
mouse lethal dose (LD50) were determined as previously described

Fig. 3. Comparison of amino acid residues in the potential NA antigenic sites between HK/483 H5N1 and BJ/262 H1N1 viruses. The putative antigenic sites (N2 numbering)
are shown on filled-space models of the monomeric NA structure constructed using PyMOL on BJ/262 NA (A) or HK/483 NA (B). The enzyme active site is depicted as yellow
surfaces. Three of 20 sites (15%) that show the same amino acids between BJ/262 NA and HK/483 NA are given red color, and 17 of 20 sites (85%) that show amino acid
variations between BJ/262 NA and HK/483 NA are given green color.
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(Lu et al., 1999). Fifty percent tissue culture infectious doses
(TCID50) were determined by serial titration of virus in Madin-
Darby Canine Kidney (MDCK) cells and incubated at 37 1C for
3 days. After which virus titers in culture supernatants were
determined by hemagglutination assay.

Preparation of rabbit polyclonal antisera

Polyclonal rabbit antisera (Rα) were generated by intramuscular
and subcutaneous inoculation of adult New Zealand white rabbits
with 100 mg of purified baculovirus-expressed rNA protein emulsified
in Titermax adjuvant (CytRx Corporation, Norcross, GA, USA) in a 1:1
ratio. The rNA protein prepared from HK/483 and BJ/262 viruses was
chosen because of its commercial availability as a tetrameric structure
(Protein Sciences Corporation, Meriden, CT). The rabbits (n¼2) were
immunized with each rNA four times at 1 month intervals, and were
bled for antisera 1 month after the last injection. In addition, a single
rabbit was immunized with multiple doses of rHA (Protein Sciences)
from A/Vietnam/1203/2004 (VN/1203) H5N1 virus emulsified in
Titermax adjuvant and used as a positive control.

Antibody assays

NA and NA-inhibition assays (NI) were performed with a fetuin
substrate (Aymard-Henry et al., 1973). Plaque size reduction (PSR)
assays were performed as previously described (Jahiel and
Kilbourne, 1966). Briefly, confluent MDCK monolayers were inocu-
lated with 100 plaque-forming units (PFU) of virus for 1 h followed
by the addition of two-fold serial dilutions of antisera incorporated
into the agar overlays. Plaque assay plates were incubated for 40 h
and stained with 1% (w/v) crystal violet solution. The endpoint
titers were calculated as the highest serum dilution that gave 50%
inhibition of mean plaque size in the presence of normal rabbit
serum (NRS). NA-specific IgG enzyme-linked immunosorbent
assays (ELISA) were carried out using 1 mg/ml of rNA as the coating
antigen, as previously described (Katz et al., 1997). The single
radial hemolysis (SRH) assay was performed as previously
described (Farrohi et al., 1977). Briefly, BJ/262 or BPL-inactivated
HK/483 virus was adsorbed to packed TRBCs, and then incorpo-
rated into 1% agarose gels. The anti-NA antibody titers are
expressed as the area of lysis zone (mm2). Replication inhibition
(RI) assays were performed by adding 200 ml of serum–virus
mixtures (100 ml of 2-fold serial dilutions of serumþ100 ml of
100 TCID50 of virus) into MDCK monolayers. The 96-well plates
were inoculated at 37 1C for 48 h. To quantify viral particles,
supernatant fluids in each well were titrated for HAU by HA
assays. The RI titer is expressed as the highest serum dilution
which reduced Z50% HA activity of the negative control sera.

Passive immunizations and challenge experiments

Six week-old female BALB/c mice (Jackson Laboratories, Bar
Harbor, MA) were injected intraperitoneally (i.p.) with one dose of
0.5 ml of sera 24 h prior to challenge with 50 ml of 5 LD50 of HK/483
virus. In a second experiment, 1 ml of rabbit sera was given 24 h prior
to virus challenge, 0.5 ml of sera at day 2 and day 5 post inoculation
(p.i.) with 50 ml of 3 LD50 of HK/483 virus. Mice were observed daily
for weight loss and death for 14 days. Viral replication in whole lung
and brain tissues was determined on day 6 p.i. and virus titers were
expressed as the mean log10 (EID50)/ml (Lu et al., 1999).

Sequence alignments and NA structure modeling

NA sequences were downloaded from the Influenza Virus
Resource at NCBI and Global Initiative on Sharing All Influenza
Data (GISAID). A complete NA alignment of amino acid sequences

was made using ClustalW (Larkin et al., 2007) and adjusted based
on N2 numbering. Three-dimensional structures of NAs were
generated by the Swiss Model (http://swissmodel.expasy.org)
using A/Brevig Mission/1/1918 (H1N1) NA structure as a model
for BJ/262 NA [PDB code 3BEQ, Sequence identity: 88%; (Xu et al.,
2008)] and A/Vietnam/1203/2004 H5N1 NA structure for HK/483
NA [PDB code 3CKZ; Sequence identity: 94%; (Collins et al., 2008)].
All structure figures were generated using PyMOL software
(Bramucci et al., 2012).

Statistical analysis

Student's t test was used to measure statistical significance of
virus titers in tissues and weight loss. The log-rank test was used
to measure mortality differences between antiserum treated and
NRS treated mice.
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