5 research outputs found

    Molecular Characterization of Staphylococcus aureus Isolated from Human and Food Samples in Northern Algeria

    No full text
    Staphylococcus aureus is a commensal resident of the skin and nasal cavities of humans and can cause various infections. Some toxigenic strains can contaminate food matrices and cause foodborne intoxications. The present study aimed to provide relevant information (clonal complex lineages, agr types, virulence and antimicrobial resistance-associated genes) based on DNA microarray analyses as well as the origins and dissemination of several circulating clones of 60 Staphylococcus aureus isolated from food matrices (n = 24), clinical samples (n = 20), and nasal carriers (n = 16) in northern Algeria. Staphylococcus aureus were genotyped into 14 different clonal complexes. Out of 60 S. aureus, 13 and 10 isolates belonged to CC1-MSSA and CC97-MSSA, respectively. The CC 80-MRSA-IV was the predominant S. aureus strain in clinical isolates. The accessory gene regulator allele agr group III was mainly found among clinical isolates (70.4%). Panton–Valentine leukocidin genes lukF/lukS-PV were detected in 13.3% of isolates that all belonged to CC80-MRSA. The lukF/S-hlg, hlgA, and hla genes encoding for hemolysins and leucocidin components were detected in all Staphylococcusaureus isolates. Clinical and food isolates harbored more often the antibiotic resistance genes markers. Seventeen (28.3%) methicillin-resistant Staphylococcus aureus carrying the mecA gene localized on a SCCmec type IV element were identified. The penicillinase operon (blaZ/I/R) was found in 71.7% (43/60) of isolates. Food isolates belonging to CC97-MSSA carried several antibiotic resistance genes (blaZ, ermB, aphA3, sat, tetM, and tetK). The results of this study showed that all clones were found in their typical host, but interestingly, some nasal carriers had isolates assigned to CC705 thought to be absent in humans. The detection of MRSA strains among food isolates should be considered as a potential public health risk. Therefore, controlling the antibiotics prescription for a rational use in human and animal infections is mandatory

    Genomic Diversity and Virulence Genes Characterization of Bacillus cereus sensu lato Isolated from Processing Equipment of an Algerian Dairy Plant

    Get PDF
    Bacillus cereus is a ubiquitous spore-forming bacterium causing food spoilage. In this study, seventeen B. cereus were isolated from dairy processing equipment in Algeria and characterized. The pathogenic potential genes encoding hemolysin, nonhaemolytic enterotoxin, cytotoxin K and emetic toxin were investigated by PCR. Phylogeny and genetic markers for antimicrobial resistance and virulence were analyzed using whole-genome sequencing data using the Illumina MiSeq® technology. The identity of the isolated strains was confirmed as B. cereus sensu lato and the sequencing of the panC gene clustered 64.7% of them in phylogenetic group III and 35.3% in group IV. The results of PFGE showed that 8 (47.1%), 4 (23.5%), 3 (17.6%) and 2 (11.8%) were differentiated into four groups A, B, C and D, respectively. Each of the two panC phylogenetic groups contains two different types of isolates corresponding to PFGE group (A and C) and (B and D) for phylogenetic groups III and IV, respectively. None of the 14 isolates carried the emetic toxin (ces) gene, whereas other toxin genes were variably detected. Genotyping assigned all isolates to three different sequence types (ST 2226, ST1018 and ST1431) while one clonal complex (CC-142) was identified in three isolates. Hierarchical clustering with a threshold of 500 core genome single nucleotide polymorphism (cgSNPs) differences grouped the strains into three clusters while two strains were less than 20 SNPs different. Three B. cereus (25%) contained three enterotoxic HBL complex-encoding genes hblA/C/D. Enterotoxic NHE complex-encoding genes (nheA/B/C) and the ctyK1 gene were detected in all isolates. The overall results highlight the risk due to toxins produced by the B. cereus group in the food safety and dairy industries in Algeria. This study emphasized the potential of whole-genome sequencing for genotyping and predicting the virulence-associated genes and antimicrobial resistance. The present study will help to better assess the health and spoilage risk associated with B. cereus in dairy processing plants and to incorporate adequate preventive measures
    corecore