154 research outputs found

    Paternal physical exercise modulates global DNA methylation status in the hippocampus of male rat offspring

    Get PDF
    It is widely known that maternal physical exercise is able to induce beneficial improvements in offspring cognition; however, the effects of paternal exercise have not been explored in detail. The present study was designed to evaluate the impact of paternal physical exercise on memory and learning, neuroplasticity and DNA methylation levels in the hippocampus of male offspring. Adult male Wistar rats were divided into two groups: sedentary or exercised fathers. The paternal preconception exercise protocol consisted of treadmill running, 20 minutes daily, 5 consecutive days per week for 22 days, while the mothers were not trained. After mating, paternal sperm was collected for global DNA methylation analysis. At postnatal day 53, the offspring were euthanized, and the hippocampus was dissected to measure cell survival by 5-bromo-2′-deoxiuridine and to determine the expression of synaptophysin, reelin, brain-derived neurotrophic factor and global DNA methylation levels. To measure spatial memory and learning changes in offspring, the Morris water maze paradigm was used. There was an improvement in spatial learning, as well as a significant decrease in hippocampal global DNA methylation levels in the offspring from exercised fathers compared with those from sedentary ones; however, no changes were observed in neuroplasticity biomarkers brain-derived neurotrophic factor, reelin and 5-bromo-2′-deoxiuridine. Finally, the global DNA methylation of paternal sperm was not significantly changed by physical exercise. These results suggest a link between paternal preconception physical activity and cognitive benefit, which may be associated with hippocampal epigenetic programming in male offspring. However, the biological mechanisms of this modulation remain unclear

    Monoamines in the pedal plexus of the land snail Megalobulimus oblongus (Gastropoda, Pulmonata)

    Get PDF
    In molluscs, the number of peripheral neurons far exceeds those found in the central nervous system. Although previous studies on the morphology of the peripheral nervous system exist, details of its organization remain unknown. Moreover, the foot of the terrestrial species has been studied less than that of the aquatic species. As this knowledge is essential for our experimental model, the pulmonate gastropod Megalobulimus oblongus, the aim of the present study was to investigate monoamines in the pedal plexus of this snail using two procedures: glyoxylic acid histofluorescence to identify monoaminergic structures, and the unlabeled antibody peroxidase anti-peroxidase method using antiserum to detect the serotonergic component of the plexus. Adult land snails weighing 48-80 g, obtained from the counties of Barra do Ribeiro and Charqueadas (RS, Brazil), were utilized. Monoaminergic fibers were detected throughout the pedal musculature. Blue fluorescence (catecholamines, probably dopamine) was observed in nerve branches, pedal and subepithelial plexuses, and in the pedal muscle cells. Yellow fluorescence (serotonin) was only observed in thick nerves and in muscle cells. However, when immunohistochemical methods were used, serotonergic fibers were detected in the pedal nerve branches, the pedal and subepithelial plexuses, the basal and lateral zones of the ventral integument epithelial cells, in the pedal ganglion neurons and beneath the ventral epithelium. These findings suggest catecholaminergic and serotonergic involvement in locomotion and modulation of both the pedal ganglion interneurons and sensory information. Knowledge of monoaminergic distribution in this snail´s foot is important for understanding the pharmacological control of reflexive responses and locomotive behavior

    The annual reproductive cycle of the snail Megalobulimus abbreviatus (Bequaert, 1948) (Gastropoda, pulmonata)

    Get PDF
    Variações morfológicas nos órgãos do sistema reprodutor dos gastrópodes pulmonados são observadas ao longo do ano e podem ser correlacionadas a fases de seu ciclo reprodutivo. A partir dessa observação, a massa dos órgãos do sistema reprodutor do caracol Megalobulimus abbreviatus foi tomada em cada estação do ano e foram obtidas secções histológicas das gônadas. Os valores de massa foram utilizados para a obtenção do índice organo-somático e as secções, para calcular o diâmetro médio dos ovócitos e o índice de maturação ovocitária. Concluímos que M. abbreviatus é um caracol “iteroparous”, apresentando ciclo reprodutivo anual caracterizado por acasalamento e oviposição durante a primavera e o início do verão e pela preparação do sistema reprodutor para um nova fase reprodutiva, que se inicia em janeiro e se estende até o final do inverno.Morphological changes in the sexual organs of the pulmonates were observed throughout a year and correlated with reproductive-cycle periods. Reproductive-organ weights of the snail Megalobulimus abbreviatus were recorded seasonally and gonad sections were analyzed morphologically. The weights were used to obtain the organosomatic index. Mean oocytic diameter and oocytic maturation index were based on gonad sections. It was concluded that M. abbreviatus is an iteroparous snail whose annual reproductive cycle is characterized by mating and egg laying throughout spring and early summer, and also by reproductive system preparation, occurring over the remainder of the summer until the end of winter, for a new breeding season
    corecore