699 research outputs found

    Matrix Model of QCD: Edge Localized Glue Balls and Phase Transitions

    Full text link
    In a matrix model of pure SU(2)SU(2) Yang-Mills theory, boundaries emerge in the space of Mat3(R)\textrm{Mat}_{3}(\mathbb{R}) and the Hamiltonian requires boundary conditions. We show the existence of edge localized glueball states which can have negative energies. These edge levels can be lifted to positive energies if the gluons acquire a London-like mass. This suggests a new phase of QCD with an incompressible bulk.Comment: 18 pages, 5 figures, minor reviso

    Nonequilibrium Phase Transition in the Kinetic Ising model: Critical Slowing Down and Specific-heat Singularity

    Full text link
    The nonequilibrium dynamic phase transition, in the kinetic Ising model in presence of an oscillating magnetic field, has been studied both by Monte Carlo simulation and by solving numerically the mean field dynamic equation of motion for the average magnetisation. In both the cases, the Debye 'relaxation' behaviour of the dynamic order parameter has been observed and the 'relaxation time' is found to diverge near the dynamic transition point. The Debye relaxation of the dynamic order parameter and the power law divergence of the relaxation time have been obtained from a very approximate solution of the mean field dynamic equation. The temperature variation of appropiately defined 'specific-heat' is studied by Monte Carlo simulation near the transition point. The specific-heat has been observed to diverge near the dynamic transition point.Comment: Revtex, Five encapsulated postscript files, submitted to Phys. Rev.

    Large-Signal Simulation of 94 GHz Pulsed Silicon DDR IMPATTs Including the Temperature Transient Effect

    Get PDF
    In this paper large-signal modeling and simulation has been carried to study the frequency chirping due to temperature transients and the large-signal power and efficiency of pulsed silicon Double-Drift Region (DDR) Impact Avalanche Transit Time (IMPATT) device operating at 94 GHz. A large-signal simulation method based on non-sinusoidal voltage excitation incorporating the transient thermal effect has been developed by the authors. Results show that the device is capable of delivering a peak pulsed power output of 17.5 W with 12.8% efficiency when the voltage modulation is 60%. The maximum junction temperature rise is 350.2 K for a peak pulsed bias current of 6.79 A with 100 ns pulsewidth and 0.5 percent duty cycle; whereas the chirp bandwidth is 8.3 GHz

    Nonequilibrium phase transition in the kinetic Ising model: Is transition point the maximum lossy point ?

    Full text link
    The nonequilibrium dynamic phase transition, in the kinetic Ising model in presence of an oscillating magnetic field, has been studied both by Monte Carlo simulation (in two dimension) and by solving the meanfield dynamical equation of motion for the average magnetization. The temperature variations of hysteretic loss (loop area) and the dynamic correlation have been studied near the transition point. The transition point has been identified as the minimum-correlation point. The hysteretic loss becomes maximum above the transition point. An analytical formulation has been developed to analyse the simulation results. A general relationship among hysteresis loop area, dynamic order parameter and dynamic correlation has also been developed.Comment: 8 pages Revtex and 4 Postscript figures; To appear in Phys. Rev.

    Dynamic Magnetization-Reversal Transition in the Ising Model

    Full text link
    We report the results of mean field and the Monte Carlo study of the dynamic magnetization-reversal transition in the Ising model, brought about by the application of an external field pulse applied in opposition to the existing order before the application of the pulse. The transition occurs at a temperature T below the static critical temperature T_c without any external field. The transition occurs when the system, perturbed by the external field pulse competing with the existing order, jumps from one minimum of free energy to the other after the withdrawal of the pulse. The parameters controlling the transition are the strength h_p and the duration Delta t of the pulse. In the mean field case, approximate analytical expression is obtained for the phase boundary which agrees well with that obtained numerically in the small Delta t and large T limit. The order parameter of the transition has been identified and is observed to vary continuously near the transition. The order parameter exponent beta was estimated both for the mean field (beta =1) and the Monte Carlo beta = 0.90 \pm 0.02 in two dimension) cases. The transition shows a "critical slowing-down" type behaviour near the phase boundary with diverging relaxation time. The divergence was found to be logarithmic in the mean field case and exponential in the Monte Carlo case. The finite size scaling technique was employed to estimate the correlation length exponent nu (= 1.5 \pm 0.3 in two dimension) in the Monte Carlo case.Comment: 13 pages, latex, 8 figure

    Effects of boundary conditions on the critical spanning probability

    Full text link
    The fractions of samples spanning a lattice at its percolation threshold are found by computer simulation of random site-percolation in two- and three-dimensional hypercubic lattices using different boundary conditions. As a byproduct we find pc=0.311605(5)p_c = 0.311605(5) in the cubic lattice.Comment: 8 pages Latex, To appear in Int. J. Mod. Phys.

    Dynamic Phase Transition in a Time-Dependent Ginzburg-Landau Model in an Oscillating Field

    Full text link
    The Ginzburg-Landau model below its critical temperature in a temporally oscillating external field is studied both theoretically and numerically. As the frequency or the amplitude of the external force is changed, a nonequilibrium phase transition is observed. This transition separates spatially uniform, symmetry-restoring oscillations from symmetry-breaking oscillations. Near the transition a perturbation theory is developed, and a switching phenomenon is found in the symmetry-broken phase. Our results confirm the equivalence of the present transition to that found in Monte Carlo simulations of kinetic Ising systems in oscillating fields, demonstrating that the nonequilibrium phase transition in both cases belongs to the universality class of the equilibrium Ising model in zero field. This conclusion is in agreement with symmetry arguments [G. Grinstein, C. Jayaprakash, and Y. He, Phys. Rev. Lett. 55, 2527 (1985)] and recent numerical results [G. Korniss, C.J. White, P. A. Rikvold, and M. A. Novotny, Phys. Rev. E (submitted)]. Furthermore, a theoretical result for the structure function of the local magnetization with thermal noise, based on the Ornstein-Zernike approximation, agrees well with numerical results in one dimension.Comment: 16 pp. RevTex, 9 embedded ps figure
    corecore