32 research outputs found

    Identification of Thai cassava cultivars using SCAR markers and multiplex PCR

    Get PDF
    āļšāļ—āļ„āļąāļ”āļĒāđˆāļ­ āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡āđ€āļ›āđ‡āļ™āļžāļ·āļŠāđ€āļĻāļĢāļĐāļāļāļīāļˆāļ—āļĩāđˆāļĄāļĩāļ„āļ§āļēāļĄāļŠāļģāļ„āļąāļ āđāļĨāļ°āļĄāļĩāļāļēāļĢāļ„āļąāļ”āđ€āļĨāļ·āļ­āļāļžāļąāļ™āļ˜āļļāđŒāļ›āļĨāļđāļāļ—āļĩāđˆāļĄāļĩāđ€āļ›āļ­āļĢāđŒāđ€āļ‹āđ‡āļ™āļ•āđŒāđāļ›āđ‰āļ‡āļŠāļđāļ‡āđ€āļžāļ·āđˆāļ­āļ­āļļāļ•āļŠāļēāļŦāļāļĢāļĢāļĄ āđāļ•āđˆāļžāļąāļ™āļ˜āļļāđŒāļ›āļĨāļđāļāļ—āļĩāđˆāđ„āļ”āđ‰āļĢāļąāļšāļāļēāļĢāļžāļąāļ’āļ™āļēāļ­āļēāļˆāļĄāļĩāļĨāļąāļāļĐāļ“āļ°āļŠāļąāļ“āļāļēāļ™āļ§āļīāļ—āļĒāļēāļ„āļĨāđ‰āļēāļĒāļ„āļĨāļķāļ‡āļāļąāļ™ āļ”āļąāļ‡āļ™āļąāđ‰āļ™āļāļēāļĢāļˆāļģāđāļ™āļāļžāļąāļ™āļ˜āļļāđŒāļ›āļĨāļđāļāļˆāļķāļ‡āļ•āđ‰āļ­āļ‡āļ­āļēāļĻāļąāļĒāļšāļļāļ„āļĨāļēāļāļĢāļ—āļĩāđˆāļĄāļĩāļ„āļ§āļēāļĄāļŠāļģāļ™āļēāļ āļāļēāļĢāļĻāļķāļāļĐāļēāļ™āļĩāđ‰āļĄāļĩāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒāđ€āļžāļ·āđˆāļ­āļžāļąāļ’āļ™āļēāđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļŦāļĄāļēāļĒāđ‚āļĄāđ€āļĨāļāļļāļĨāļŠāļģāļŦāļĢāļąāļšāļĢāļ°āļšāļļāļžāļąāļ™āļ˜āļļāđŒāļ›āļĨāļđāļāļ‚āļ­āļ‡āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡āđ„āļ—āļĒāļˆāļģāļ™āļ§āļ™ 16 āļžāļąāļ™āļ˜āļļāđŒāļ›āļĨāļđāļāļ—āļĩāđˆāđ„āļ”āđ‰āļˆāļēāļāđāļŦāļĨāđˆāļ‡āđ€āļŠāļ·āđ‰āļ­āļžāļąāļ™āļ˜āļļāļāļĢāļĢāļĄāđƒāļ™āļĻāļđāļ™āļĒāđŒāļ§āļīāļˆāļąāļĒāļžāļ·āļŠāđ„āļĢāđˆāļĢāļ°āļĒāļ­āļ‡ āđ‚āļ”āļĒāļ™āļģāđāļ–āļšāļ”āļĩāđ€āļ­āđ‡āļ™āđ€āļ­āļ‹āļķāđˆāļ‡āļĄāļĩāļ„āļ§āļēāļĄāđāļ•āļāļ•āđˆāļēāļ‡āļāļąāļ™āđƒāļ™āļžāļąāļ™āļ˜āļļāđŒāļ›āļĨāļđāļāļ•āđˆāļēāļ‡āđ† āļ—āļĩāđˆāđ„āļ”āđ‰āļˆāļēāļāļāļēāļĢāļ—āļģ HAT-RAPD āļĄāļēāđ‚āļ„āļĨāļ™āđāļĨāļ°āļŦāļēāļĨāļģāļ”āļąāļšāļ™āļīāļ§āļ„āļĨāļĩāđ‚āļ­āđ„āļ—āļ”āđŒ āđ€āļžāļ·āđˆāļ­āļ­āļ­āļāđāļšāļšāđ„āļžāļĢāđ€āļĄāļ­āļĢāđŒāļŠāļģāļŦāļĢāļąāļš SCAR āļ—āļĩāđˆāļĄāļĩāļ„āļ§āļēāļĄāļˆāļģāđ€āļžāļēāļ°āļˆāļģāļ™āļ§āļ™ 4 āļ„āļđāđˆ āđ‚āļ”āļĒ SCAR marker āļ—āļĩāđˆāđ„āļ”āđ‰āļŠāļēāļĄāļēāļĢāļ–āđƒāļŠāđ‰āļˆāļģāđāļ™āļāļžāļąāļ™āļ˜āļļāđŒāļ›āļĨāļđāļāļ‚āļ­āļ‡āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡āđ„āļ”āđ‰ āļ”āļąāļ‡āļ™āļĩāđ‰ (1) 308-bp marker āđāļĨāļ° 850-bp marker āđƒāļŠāđ‰āļĢāļ°āļšāļļāļ­āļąāļ•āļĨāļąāļāļĐāļ“āđŒāļ‚āļ­āļ‡āļžāļąāļ™āļ˜āļļāđŒāļ›āļĨāļđāļāļĢāļ°āļĒāļ­āļ‡ 60 āđāļĨāļ°āļŦāđ‰āļēāļ™āļēāļ—āļĩ āļ•āļēāļĄāļĨāļģāļ”āļąāļš (2) 414-bp marker āđƒāļŠāđ‰āļĢāļ°āļšāļļāļāļĨāļļāđˆāļĄāļžāļąāļ™āļ˜āļļāđŒāļ›āļĨāļđāļāļĢāļ°āļĒāļ­āļ‡ 1 āļĢāļ°āļĒāļ­āļ‡ 11 āļĢāļ°āļĒāļ­āļ‡ 90 āļĢāļ°āļĒāļ­āļ‡ 86-13 āļŦāđ‰āļ§āļĒāļšāļ‡ 60 āđāļĨāļ°āđ€āļāļĐāļ•āļĢāļĻāļēāļŠāļ•āļĢāđŒ 50 (3) 273-bp marker āđƒāļŠāđ‰āļĢāļ°āļšāļļāļāļĨāļļāđˆāļĄāļžāļąāļ™āļ˜āļļāđŒāļ›āļĨāļđāļāļĢāļ°āļĒāļ­āļ‡ 3 āļĢāļ°āļĒāļ­āļ‡ 9 āđāļĨāļ°āļĢāļ°āļĒāļ­āļ‡ 72 āđāļĨāļ° (4) 414-bp marker āđāļĨāļ° 273-bp marker āđƒāļŠāđ‰āļĢāļ°āļšāļļāļāļĨāļļāđˆāļĄāļžāļąāļ™āļ˜āļļāđŒāļ›āļĨāļđāļāļĢāļ°āļĒāļ­āļ‡ 5 āđāļĨāļ°āļŦāđ‰āļ§āļĒāļšāļ‡ 80 āļ™āļ­āļāļˆāļēāļāļ™āļĩāđ‰ āļĒāļąāļ‡āđ„āļ”āđ‰āļĄāļĩāļāļēāļĢāļžāļąāļ’āļ™āļēāđ€āļ—āļ„āļ™āļīāļ„ multiplex PCR āļ—āļĩāđˆāđ€āļŦāļĄāļēāļ°āļŠāļĄāļāļąāļšāļāļēāļĢāđƒāļŠāđ‰āđ„āļžāļĢāđ€āļĄāļ­āļĢāđŒāļŠāļģāļŦāļĢāļąāļš SCAR āļžāļĢāđ‰āļ­āļĄāļāļąāļ™āļ—āļąāđ‰āļ‡ 4 āļ„āļđāđˆāđƒāļ™āļŦāļ™āļķāđˆāļ‡āļ›āļāļīāļāļīāļĢāļīāļĒāļē āđ€āļžāļ·āđˆāļ­āđƒāļŦāđ‰āļāļēāļĢāļ•āļĢāļ§āļˆāļŠāļ­āļšāļ”āļĩāđ€āļ­āđ‡āļ™āđ€āļ­āđ€āļ›āđ‰āļēāļŦāļĄāļēāļĒāļĄāļĩāļ„āļ§āļēāļĄāļĢāļ§āļ”āđ€āļĢāđ‡āļ§āđāļĨāļ°āļ›āļĢāļ°āļŦāļĒāļąāļ”āļĒāļīāđˆāļ‡āļ‚āļķāđ‰āļ™Â ABSTRACT   Cassava is an important economic crop which has been artificially selected to improve cultivars with high industrial yield of starch. Based on their morphoagronomic descriptors however, several improved cultivars are similar. Hence, accurate identification of each cultivar requires well-trained personnel. This study aimed to establish molecular markers for the identification of 16 Thai cassava cultivars from the germplasm collection in Rayong Field Crops Research Center. HAT-RAPD amplicons which were distinctive among the cultivars were employed for molecular cloning. Based on nucleotide sequences obtained four SCAR primer pairs were designed. SCAR markers were generated and used to differentiate the cultivars as follows: (1) 308-bp marker and 850-bp marker for Rayong 60 and Hanatee, respectively; (2) 414-bp marker for Rayong 1, Rayong 11, Rayong 90, Rayong 86-13, Huay Bong 60 and Kasetsart 50; (3) 273-bp marker for Rayong 3, Rayong 9 and Rayong 72; and (4) 414-bp and 273-bp markers for Rayong 5 and Huay Bong 80. For the procedure to be less time-consuming and more cost-effective, efficient multiplex PCR with optimal conditions was developed to incorporate all four pairs of SCAR primers in a single PCR reaction

    HAT-RAPD Fingerprinting Analysis of Thai Cassava Germplasm and Economic Cultivars of Farmers’ Preferences

    Get PDF
    āļšāļ—āļ„āļąāļ”āļĒāđˆāļ­āļāļēāļĢāļĻāļķāļāļĐāļēāļ„āļ§āļēāļĄāļŦāļĨāļēāļāļŦāļĨāļēāļĒāļ—āļēāļ‡āļžāļąāļ™āļ˜āļļāļāļĢāļĢāļĄāļ‚āļ­āļ‡āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡ (Manihot esculenta Crantz) āļˆāļģāļ™āļ§āļ™ 19 āļžāļąāļ™āļ˜āļļāđŒāļ›āļĨāļđāļ āđ‚āļ”āļĒāđƒāļŠāđ‰āđ€āļ—āļ„āļ™āļīāļ„ high annealing temperature-random amplified polymorphic DNA (HAT-RAPD) āļ›āļĢāļ°āļāļ­āļšāļ”āđ‰āļ§āļĒāļžāļąāļ™āļ˜āļļāđŒāļ›āļĨāļđāļāļ—āļĩāđˆāđ„āļ”āđ‰āļˆāļēāļāđāļŦāļĨāđˆāļ‡āđ€āļŠāļ·āđ‰āļ­āļžāļąāļ™āļ˜āļļāļāļĢāļĢāļĄāļ‚āļ­āļ‡āļĻāļđāļ™āļĒāđŒāļ§āļīāļˆāļąāļĒāļžāļ·āļŠāđ„āļĢāđˆāļĢāļ°āļĒāļ­āļ‡ 16 āļžāļąāļ™āļ˜āļļāđŒāļ›āļĨāļđāļ āđāļĨāļ°āļžāļąāļ™āļ˜āļļāđŒāļ›āļĨāļđāļāļ‹āļķāđˆāļ‡āđ€āļ›āđ‡āļ™āļ—āļĩāđˆāļ™āļīāļĒāļĄāļ‚āļ­āļ‡āđ€āļāļĐāļ•āļĢāļāļĢ 3 āļžāļąāļ™āļ˜āļļāđŒāļ›āļĨāļđāļāļˆāļēāļāļˆāļąāļ‡āļŦāļ§āļąāļ”āļ™āļ„āļĢāļĢāļēāļŠāļŠāļĩāļĄāļē āđƒāļ™āļāļēāļĢāđƒāļŠāđ‰āđ„āļžāļĢāđ€āļĄāļ­āļĢāđŒāđāļšāļšāļŠāļļāđˆāļĄāļ—āļąāđ‰āļ‡āļŦāļĄāļ” 28 āđ„āļžāļĢāđ€āļĄāļ­āļĢāđŒ āļžāļšāļ§āđˆāļē 21 āđ„āļžāļĢāđ€āļĄāļ­āļĢāđŒāđƒāļŦāđ‰āđāļ–āļšāļ”āļĩāđ€āļ­āđ‡āļ™āđ€āļ­āļ—āļĩāđˆāļĄāļĩāļ„āļ§āļēāļĄāđāļ•āļāļ•āđˆāļēāļ‡ āđ€āļĄāļ·āđˆāļ­āļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļ„āļ§āļēāļĄāļ•āđˆāļēāļ‡āļ—āļēāļ‡āļžāļąāļ™āļ˜āļļāļāļĢāļĢāļĄāļ‚āļ­āļ‡āļžāļąāļ™āļ˜āļļāđŒāļ›āļĨāļđāļāđāļ•āđˆāļĨāļ°āļ„āļđāđˆāđ‚āļ”āļĒāđƒāļŠāđ‰ Nei’s genetic distance āļžāļšāļ§āđˆāļēāļĄāļĩāļ„āļ§āļēāļĄāđāļ•āļāļ•āđˆāļēāļ‡āļ•āļąāđ‰āļ‡āđāļ•āđˆ 3 āļ–āļķāļ‡ 82% āļ™āļ­āļāļˆāļēāļāļ™āļĩāđ‰āđ€āļ”āļ™āđ‚āļ”āļĢāđāļāļĢāļĄāđāļŠāļ”āļ‡āļ„āļ§āļēāļĄāļŠāļąāļĄāļžāļąāļ™āļ˜āđŒāļ—āļēāļ‡āļžāļąāļ™āļ˜āļļāļāļĢāļĢāļĄāļ‚āļ­āļ‡āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡āļ—āļĩāđˆāļĻāļķāļāļĐāļēāļ”āđ‰āļ§āļĒ unweighted pair group  method with arithmetic mean (UPGMA) āļˆāļēāļāđāļ–āļšāļ”āļĩāđ€āļ­āđ‡āļ™āđ€āļ­āļ—āļĩāđˆāļĄāļĩāļ„āļ§āļēāļĄāđāļ•āļāļ•āđˆāļēāļ‡āļˆāļģāļ™āļ§āļ™ 61 āđāļ–āļš āļŠāļēāļĄāļēāļĢāļ–āļˆāļąāļ”āļāļĨāļļāđˆāļĄāļ—āļąāđ‰āļ‡ 19 āļžāļąāļ™āļ˜āļļāđŒāļ›āļĨāļđāļ āđ€āļ›āđ‡āļ™ 5 āļāļĨāļļāđˆāļĄ āđ‚āļ”āļĒāđāļšāđˆāļ‡āđ€āļ›āđ‡āļ™āļ•āļąāļ§āļ­āļĒāđˆāļēāļ‡āļ‚āļ­āļ‡āļžāļąāļ™āļ˜āļļāđŒāļ‚āļĄāļˆāļģāļ™āļ§āļ™ 4 āļāļĨāļļāđˆāļĄ āđāļĨāļ°āļžāļąāļ™āļ˜āļļāđŒāļŦāļ§āļēāļ™āļˆāļģāļ™āļ§āļ™ 1 āļāļĨāļļāđˆāļĄ āļ āļēāļĒāđƒāļ™āļāļĨāļļāđˆāļĄāļ‚āļ­āļ‡āļžāļąāļ™āļ˜āļļāđŒāļ‚āļĄāļžāļš 3 āļžāļąāļ™āļ˜āļļāđŒāļ›āļĨāļđāļāđ€āļĻāļĢāļĐāļāļāļīāļˆāļ—āļĩāđˆāļ™āļīāļĒāļĄāđ‚āļ”āļĒāđ€āļāļĐāļ•āļĢāļāļĢ āđ„āļ”āđ‰āđāļāđˆ āļžāļąāļ™āļ˜āļļāđŒāđ€āļāļĨāđ‡āļ”āļĄāļąāļ‡āļāļĢ (āļĄāļĩāļ„āļ§āļēāļĄāļŠāļąāļĄāļžāļąāļ™āļ˜āđŒāđƒāļāļĨāđ‰āļŠāļīāļ”āļāļąāļšāļžāļąāļ™āļ˜āļļāđŒāļĢāļ°āļĒāļ­āļ‡ 72) āļžāļąāļ™āļ˜āļļāđŒāđ„āļˆāđāļ­āļ™āļ—āđŒ (āļˆāļąāļ”āļ­āļĒāļđāđˆāđƒāļ™āļāļĨāļļāđˆāļĄāđ€āļ”āļĩāļĒāļ§āļāļąāļ™āļāļąāļšāļžāļąāļ™āļ˜āļļāđŒāļŦāđ‰āļ§āļĒāļšāļ‡ 60 āđāļĨāļ°āļžāļąāļ™āļ˜āļļāđŒāļŦāđ‰āļ§āļĒāļšāļ‡ 80) āđāļĨāļ°āļžāļąāļ™āļ˜āļļāđŒāļ™āļēāļ„āļ‚āļēāļ§ (āļˆāļąāļ”āļ­āļĒāļđāđˆāđƒāļ™āļāļĨāļļāđˆāļĄāđ€āļ”āļĩāļĒāļ§āļāļąāļ™āļāļąāļšāļžāļąāļ™āļ˜āļļāđŒāļĢāļ°āļĒāļ­āļ‡ 3 āđāļĨāļ°āļžāļąāļ™āļ˜āļļāđŒāļĢāļ°āļĒāļ­āļ‡ 5) āļ„āļģāļŠāļģāļ„āļąāļ: āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡ āđāļŦāļĨāđˆāļ‡āđ€āļŠāļ·āđ‰āļ­āļžāļąāļ™āļ˜āļļāļāļĢāļĢāļĄāļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡ āđ€āļ—āļ„āļ™āļīāļ„ HAT-RAPD āļ§āļīāļ˜āļĩ UPGMAABSTRACTSixteen cultivars of cassava (Manihot esculenta Crantz) were obtained from the germplasm collection in Rayong Field Crops Research Center, and three other economic cultivars of farmers’ preferences from a well-established cassava plantation in Nakhon Ratchasima. Genetic diversity of these nineteen cultivars was assessed by high annealing temperature-random amplified polymorphic DNA (HAT-RAPD) technique. Out of 28 random primers used, 21 generated polymorphic bands. Pairwise distances between taxa calculated using Nei’s genetic distance varied from 3 to 82%. An unweighted pair group method with arithmetic mean (UPGMA) dendrogram constructed based on 61 RAPD characters classified all 19 cultivars into five clusters, four of which containing bitter-type accessions and one accommodating sweet-type accessions. The bitter-type clusters possessed three cultivars of farmers’ preferences, including Gled Mangorn (closely related to Rayong 72), Giant (placed with Huay Bong 60 and Huay Bong 80), and Nak Khao (placed with Rayong 3 and Rayong 5).Keywords: Manihot esculenta Crantz, cassava germplasm, HAT-RAPD technique, UPGMA metho

    Species identification of economic bamboos in the genus Dendrocalamus using SCAR and multiplex PCR

    Get PDF
    Taxonomic and systematic studies of bamboos are traditionally based on floral morphology, but this can lead to difficulties in identification because of the irregular reproductive cycle of the bamboos. To overcome such problems several molecular-marker approaches have been used. In this study, eight species of the woody bamboos belonging to the genus Dendrocalamus were employed. For each species, DNA samples of 20 individual plants from different localities were isolated and then pooled to make eight bulks of DNA. Fifty RAPD primers were used to screen all bulked DNA samples. Only five primers yielded consistent and reproducible RAPD band patterns across all 160 individuals. The amplicons were present among five species of Dendrocalamus, but were absent in the other three species. They were cloned, sequenced and subsequently, five pairs of SCAR primers were designed. All SCAR primers were combined in multiplex PCR reactions to unequivocally discriminate five species of Dendrocalamus

    Isolation of Bacteriophages Specific to a Fish Pathogen, Aeromonas spp., as a Candidate for Disease Control

    Get PDF
    āļšāļ—āļ„āļąāļ”āļĒāđˆāļ­   āļāļēāļĢāđƒāļŠāđ‰āđ€āļŸāļˆāđƒāļ™āļāļēāļĢāļĢāļąāļāļĐāļēāļāļēāļĢāļ•āļīāļ”āđ€āļŠāļ·āđ‰āļ­āļ–āļ·āļ­āđ€āļ›āđ‡āļ™āļ—āļēāļ‡āđ€āļĨāļ·āļ­āļāļŦāļ™āļķāđˆāļ‡āļ—āļĩāđˆāđƒāļŠāđ‰āļ›āđ‰āļ­āļ‡āļāļąāļ™āđāļĨāļ°āļ„āļ§āļšāļ„āļļāļĄāđ‚āļĢāļ„āļ•āļīāļ”āđ€āļŠāļ·āđ‰āļ­āļˆāļēāļāđāļšāļ„āļ—āļĩāđ€āļĢāļĩāļĒāđƒāļ™āļ­āļļāļ•āļŠāļēāļŦāļāļĢāļĢāļĄāļāļēāļĢāđ€āļžāļēāļ°āđ€āļĨāļĩāđ‰āļĒāļ‡āļŠāļąāļ•āļ§āđŒāļ™āđ‰āļģ āļ­āļĒāđˆāļēāļ‡āđ„āļĢāļāđ‡āļ•āļēāļĄāļāļēāļĢāļ›āļĢāļ°āļĒāļļāļāļ•āđŒāđƒāļŠāđ‰āđ€āļŸāļˆāđƒāļ™āļāļēāļĢāļ„āļ§āļšāļ„āļļāļĄāļāļēāļĢāļ•āļīāļ”āđ€āļŠāļ·āđ‰āļ­ Aeromonas spp. āļĒāļąāļ‡āļĄāļĩāđ„āļĄāđˆāļĄāļēāļāļ™āļąāļ āļ”āļąāļ‡āļ™āļąāđ‰āļ™āļˆāļļāļ”āļ›āļĢāļ°āļŠāļ‡āļ„āđŒāļ‚āļ­āļ‡āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļ„āļ·āļ­āļāļēāļĢāđāļĒāļāđ€āļŸāļˆāļ›āļĢāļ°āđ€āļ āļ—āļ—āļĩāđˆāļ—āļģāđƒāļŦāđ‰āđ€āļāļīāļ”āļāļēāļĢāđāļ•āļāļŠāļĨāļēāļĒāđ€āļžāļ·āđˆāļ­āļ„āļ§āļšāļ„āļļāļĄāđ€āļŠāļ·āđ‰āļ­ Aeromonas spp. āđāļĨāļ°āļ›āļĢāļ°āđ€āļĄāļīāļ™āļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāđƒāļ™āļāļēāļĢāđƒāļŠāđ‰āđ€āļŸāļˆāđ€āļžāļ·āđˆāļ­āļ„āļ§āļšāļ„āļļāļĄāđ€āļŠāļ·āđ‰āļ­ Aeromonas spp. āđƒāļ™āļĢāļ°āļ”āļąāļšāļŦāđ‰āļ­āļ‡āļ›āļāļīāļšāļąāļ•āļīāļāļēāļĢ āļˆāļēāļāļ•āļąāļ§āļ­āļĒāđˆāļēāļ‡āļ™āđ‰āļģāļ„āļĨāļ­āļ‡āļˆāļģāļ™āļ§āļ™ 10 āđāļŦāļĨāđˆāļ‡ āļŠāļēāļĄāļēāļĢāļ–āđāļĒāļāđ€āļŠāļ·āđ‰āļ­ Aeromonas spp. āđ„āļ”āđ‰āđ€āļžāļĩāļĒāļ‡āļŠāļēāļĒāļžāļąāļ™āļ˜āļļāđŒāđ€āļ”āļĩāļĒāļ§āļ„āļ·āļ­ Aeromonas sp. OG-H āđāļĨāļ°āļ™āļģāļĄāļēāđƒāļŠāđ‰āđ€āļ›āđ‡āļ™āđ‚āļŪāļŠāļ•āđŒāđ€āļžāļ·āđˆāļ­āđƒāļŠāđ‰āđƒāļ™āļāļēāļĢāđāļĒāļāđ€āļŸāļˆ āđ‚āļ”āļĒāļŠāļēāļĄāļēāļĢāļ–āđāļĒāļāđ€āļŸāļˆāđ„āļ”āđ‰ 2 āļ•āļąāļ§āļ—āļĩāđˆāđāļ•āļāļ•āđˆāļēāļ‡āļāļąāļ™āđāļĨāļ°āđƒāļŦāđ‰āļŠāļ·āđˆāļ­āļ§āđˆāļē FOG1 āđāļĨāļ° FOG3 āļˆāļēāļāļāļēāļĢāļ•āļĢāļ§āļˆāļ”āļđāļĢāļđāļ›āļĢāđˆāļēāļ‡āļ‚āļ­āļ‡āđ€āļŸāļˆāļ āļēāļĒāđƒāļ•āđ‰āļāļĨāđ‰āļ­āļ‡āļˆāļļāļĨāļ—āļĢāļĢāļĻāļ™āđŒāļ­āļīāđ€āļĨāđ‡āļ„āļ•āļĢāļ­āļ™āđāļšāļšāļŠāđˆāļ­āļ‡āļœāđˆāļēāļ™āļžāļšāļ§āđˆāļē āđ€āļŸāļˆāļ—āļąāđ‰āļ‡ 2 āļ•āļąāļ§āļˆāļąāļ”āļ­āļĒāļđāđˆāđƒāļ™āđāļŸāļĄāļīāļĨāļĩ Myoviridae āđ€āļŸāļˆāļ—āļąāđ‰āļ‡āļŠāļ­āļ‡āļ•āļąāļ§āļŠāļēāļĄāļēāļĢāļ–āļ•āļīāļ”āđ€āļŠāļ·āđ‰āļ­āđ„āļ”āđ‰āđƒāļ™ Aeromonas sp. OG-H āđ€āļžāļĩāļĒāļ‡āļŠāļēāļĒāļžāļąāļ™āļ˜āļļāđŒāđ€āļ”āļĩāļĒāļ§ āđāļĨāļ°āļĄāļĩāļ„āļ§āļēāļĄāđ€āļŠāļ–āļĩāļĒāļĢāļ•āđˆāļ­ pH āđāļĨāļ°āļ­āļļāļ“āļŦāļ āļđāļĄāļī āđƒāļ™āļŠāđˆāļ§āļ‡ 4.0-11.0 āđāļĨāļ° 30-65 āļ­āļ‡āļĻāļēāđ€āļ‹āļĨāđ€āļ‹āļĩāļĒāļŠ āļ•āļēāļĄāļĨāļģāļ”āļąāļš āđ€āļĄāļ·āđˆāļ­āļ™āļģāļĄāļēāļ—āļ”āļŠāļ­āļšāļāļēāļĢāļ„āļ§āļšāļ„āļļāļĄāđ€āļŠāļ·āđ‰āļ­ Aeromonas sp. OG-H āđƒāļ™āļĢāļ°āļ”āļąāļšāļŦāđ‰āļ­āļ‡āļ›āļāļīāļšāļąāļ•āļīāļāļēāļĢāļžāļšāļ§āđˆāļē āļāļēāļĢāļ—āļ”āļĨāļ­āļ‡āļ—āļĩāđˆāļĄāļĩāļāļēāļĢāđ€āļ•āļīāļĄāđ€āļŸāļˆāļāđˆāļ­āļ™āļāļēāļĢāđ€āļ•āļīāļĄāđ€āļŠāļ·āđ‰āļ­āļˆāļ°āļŠāļēāļĄāļēāļĢāļ–āļĨāļ”āļˆāļģāļ™āļ§āļ™āđ€āļŠāļ·āđ‰āļ­āđ„āļ”āđ‰āđƒāļ™āļŠāđˆāļ§āļ‡ 12 āļŠāļąāđˆāļ§āđ‚āļĄāļ‡āđāļĢāļāļ­āļĒāđˆāļēāļ‡āđ€āļŦāđ‡āļ™āđ„āļ”āđ‰āļŠāļąāļ” āļˆāļēāļāļ‚āđ‰āļ­āļĄāļđāļĨāļ—āļĩāđˆāđ„āļ”āđ‰āļŠāļĩāđ‰āđƒāļŦāđ‰āđ€āļŦāđ‡āļ™āļ§āđˆāļēāđ€āļŸāļˆ āļ—āļąāđ‰āļ‡āļŠāļ­āļ‡āļ•āļąāļ§āļĄāļĩāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāđƒāļ™āļāļēāļĢāļ™āļģāđ„āļ›āđƒāļŠāđ‰āđƒāļ™āļāļēāļĢāļ„āļ§āļšāļ„āļļāļĄāļāļēāļĢāļ•āļīāļ”āđ€āļŠāļ·āđ‰āļ­ Aeromonas āđ„āļ”āđ‰   āļ„āļģāļŠāļģāļ„āļąāļ: Aeromonas āđāļšāļ„āđ€āļ—āļ­āļĢāļīāđ‚āļ­āđ€āļŸāļˆ āļ„āļ§āļēāļĄāđ€āļŠāļ–āļĩāļĒāļĢāļ•āđˆāļ­āļ­āļļāļ“āļŦāļ āļđāļĄāļī āļ„āļ§āļēāļĄāđ€āļŠāļ–āļĩāļĒāļĢāļ•āđˆāļ­ pH  ABSTRACT Phage therapy can be used as an alternative method to prevent and control pathogenic bacteria in aquaculture. However, applications of bacteriophages for a control of Aeromonas spp. infection are still limited.  Therefore, the aims of this study were to isolate lytic bacteriophages of Aeromonas spp. from canals and to evaluate the effectiveness of these phages to control Aeromonas spp. at the laboratory level. From 10 collecting sites, one isolate of Aeromonas designated as Aeromonas sp. OG-H was obtained and employed as a host for isolation of the phages. Two different phages were obtained, and specified as FOG1 and FOG3. Electron micrographs revealed that all isolated phages belonged to the family Myoviridae. These phages were highly specific to their host (Aeromonas sp. OG-H) and relatively stable at the pH and temperature ranging from 4.0 to 11.0 and 30 to 65â—ĶC, respectively. An in vitro study of the effect of bacteriophages against Aeromonas sp. OG-H revealed a remarkable decrease of the pathogen at 12 h, followed by bacterial regrowth to pre-treatment levels. These data suggested that the phages FOG1 and FOG3 are efficient as biocontrol agents against Aeromonas infection.   Keywords: Aeromonas, Bacteriophage, Temperature stability, pH stabilit

    MOLECULAR DISCRIMINATION BETWEEN INDIVIDUAL METACERCARIAE OF PARAGONIMUS HETEROTREMUS AND P. WESTERMANI OCCURRING IN THAILAND

    Get PDF
    Abstract. To accurately discriminate between individual metacercariae of Paragonimus heterotremus and P. westermani occurring in Thailand, polymerase chain reaction (PCR)-based molecular methods were established and subjected to an evaluation. We first amplified and sequenced the second internal transcribed spacer (ITS2) region of the nuclear ribosomal DNA of the two species. Based on their nucleotide differences, P. heterotremus and P. westermani were unequivocally discriminated from each other. These nucleotide differences were further utilized to select the ApaL1 endonuclease site for PCR-restriction fragment length polymorphism (PCR-RFLP) analyses and to design species-specific primers for multiplex PCR reactions. Both PCR-RFLP and multiplex PCR methods allowed a more rapid and labor-effective species discrimination. Furthermore, the multiplex PCR method enabled the most efficient discrimination because species identification involved a single round of PCR in a single tube. In Thailand, P. heterotremus is the only species affecting humans. Thus, the methods established in the present study can be used as reliable tools to identify the lung fluke metacercariae that cause human disease. primers. All of these methods utilize nucleotide differences in the second internal transcribed spacer (ITS2) of the nuclear ribosomal DNA (rDNA) for dicrimination between the two species. In the present study, we focused on the lung flukes occurring in Thailand and applied the methods for species discrimination between individual metacercariae of P. heterotremus and P. westermani. MATERIALS AND METHODS Parasite material and DNA isolation The metacercariae of P. heterotremus and P. westermani DNA amplification, restriction digestion and sequencing The rDNA region spanning the ITS2 from individual metacercariae of the two species was amplified by PCR using the primers, 3S (forward, 5'-GGTACCGGTGGATCACTCGGCTCGTG-3') and A28 (reverse, 5'-GGGATCCTGGTTAGTTTCTTTT CCTCCGC-3'). These primers were designed on the basis of the conserved rDNA sequences of the Schistosoma specie

    Molecular systematics of a new form of Paragonimus westermani discovered in Thailand. Southeast Asian J Trop Med Public Health

    No full text
    Abstract. This study aimed to clarify evolutionary relationships of P. westermani-like with other members of Paragonimus in Asia. The parsimony method was employed in molecular analyses of the second internal transcribed spacer (ITS2) region of nuclear ribosomal DNA and the partial cytochrome c oxidase subunit I (COI) region of mitochondrial DNA. A single most parsimonious tree obtained from the ITS2 region revealed two important groups within P. westermani complex that is based on geographical origins. From this study, it is evident that P. westermani-like is either placed well within the P. westermani complex or is located close to the complex. Since a significant genetic variation was observed between Thai P. westermani and P. westermani-like, further investigation on the specificity of first intermediate hosts should be carried out to determine a proper taxonomic status of P. westermani-like

    Phenotypic disparity and adaptive radiation in the genus Cladia (Lecanorales, Ascomycota)

    No full text
    Phylogenetic relationships of the genera Cladia, Heterodea and Ramalinora were reconstructed using a combined dataset of ribosomal nuclear ITS and LSU and mitochondrial SSU, and protein-coding Mcm7 DNA sequences. Maximum likelihood and Bayesian analyses strongly supported a monophyletic group in which the species of the foliose genus Heterodea and the crustose genus Ramalinora were nested within the fruticose genus Cladia. Alternative hypothesis testing rejected an independent status of Ramalinora. We tested the hypothesis that an adaptive radiation led to the morphological disparity found in the Cladia clade. Gamma-statistics indicated a significantly disproportional clustering of origins of extant lineages at the base of the Cladia clade and lineage-through-time plots were also consistent with the hypothesis of an adaptive radiation at the base of the Cladia clade. Ancestral-range reconstructions supported an origin of Cladia and the three major lineages within Cladia in Australia. On the basis of these results, we propose an evolutionary hypothesis for the genus. The results suggest that processes of adaptive radiation of the ancestor of Cladia in Australia led to the morphological disparity in the extant taxa, and that the broad distribution of some extant species is due to subsequent long-distance dispersal

    Cladia neocaledonica Parnmen & Lumbsch, comb. nov.

    No full text
    Cladia neocaledonica (RÃĪsÃĪnen) Parnmen & Lumbsch, comb. nov. Mycobank No.: 803446 Cladonia neocaledonica RÃĪsÃĪnen (1944: 20). Type: NEW CALEDONIA. Wagap, 1863, Vieillard s.n. (lectotype H!, designated by Filson [1981]; isolectotypes CANB, H, KUO, TNS, US).Published as part of Parnmen, Sittiporn, Leavitt, Steven D., Rangsiruji, Achariya & Lumbsch, H. Thorsten, 2013, Identification of species in the Cladia aggregata group using DNA barcoding (Ascomycota: Lecanorales), pp. 1-14 in Phytotaxa 115 (1) on page 7, DOI: 10.11646/phytotaxa.115.1.1, http://zenodo.org/record/507899

    Cladia cryptica Parnmen & Lumbsch 2013, sp. nov.

    No full text
    Cladia cryptica Parnmen & Lumbsch, sp. nov. (Fig. 3B). Mycobank No.: 803449 Characterized by inflated sterile pseudopodetia, with glossy, yellow to brownish surface, mostly dichotomously branched toward the apex. Perforations abundant. Conidiomata on terminal branches of sterile pseudopodetia, conidia 5–7.5 Âĩm long, bacilliform. The sizes of fertile pseudopodetia are variable, with yellow to brownish yellow surfaces, racemosely branched. Apothecia on terminal branches of fertile pseudopodetia, 0.5–1.0 mm wide, disk concave to plane, brownish black; ascospores ellipsoid, non-septate, hyaline, 7–10 × 2.5 Âĩm, 8 per ascus. Secondary chemistry: two chemical races were found: I) Barbatic acid and 4- O -demethylbarbatic acid, and II) stictic acid chemosyndrome. Type: — NEW ZEALAND. South Island: Southland, Mistletoe Lake, Te Anau Downs, 45°12'S 167°49'E, 218 m, Knight 61705 (holotype AK!; isotype F!). Phylogenetic notes: —Strongly to moderately supported monophyletic lineage in concatenated multilocus gene tree (ML bootstrap = 83%, posterior probability = 1.0). Cladia cryptica is identical to clade 3 in Parnmen et al. (2012). Reference sequence: — GenBank No. KC148368. Distribution and habitat: —Known from Australia, New Zealand and Malaysia. It is found on soil, grassy soil and rocks. In Tasmania, we found this species in dry sclerophyll forests. Etymology: —The epithet cryptica refers to the fact that the species has been hidden under the name of the species complex C. aggregata. Additional specimens examined (paratypes): — AUSTRALIA. Australian Capital Territory: Canberra Nature Park, 28 August 2008, Elix 39060 (CANB); Tasmania: Ben Lomond National Park, March 2009, Lumbsch, Widhelm & Parnmen 20034f (F, RAMK); ibid., West of Oxford, March 2009, Lumbsch, Widhelm & Parnmen 19975h, 19975f (F, RAMK); MALAYSIA. Penang: Kedah Peak, March 2010, Buaruang & Polyiam s.n. (RAMK); NEW ZEALAND. South Island: Otago, Swampy summit, August 2011, Ludwig 61724 (F).Published as part of Parnmen, Sittiporn, Leavitt, Steven D., Rangsiruji, Achariya & Lumbsch, H. Thorsten, 2013, Identification of species in the Cladia aggregata group using DNA barcoding (Ascomycota: Lecanorales), pp. 1-14 in Phytotaxa 115 (1) on page 11, DOI: 10.11646/phytotaxa.115.1.1, http://zenodo.org/record/507899
    corecore