444 research outputs found

    Solitary waves in a two-dimensional nonlinear Dirac equation: from discrete to continuum

    Get PDF
    In the present work, we explore a nonlinear Dirac equation motivated as the continuum limit of a binary waveguide array model. We approach the problem both from a near-continuum perspective as well as from a highly discrete one. Starting from the former, we see that the continuum Dirac solitons can be continued for all values of the discretization (coupling) parameter, down to the uncoupled (so-called anti-continuum) limit where they result in a 9-site configuration. We also consider configurations with 1- or 2-sites at the anti-continuum limit and continue them to large couplings, finding that they also persist. For all the obtained solutions, we examine not only the existence, but also the spectral stability through a linearization analysis and finally consider prototypical examples of the dynamics for a selected number of cases for which the solutions are found to be unstable

    Matter X waves

    Full text link
    We predict that an ultra-cold Bose gas in an optical lattice can give rise to a new form of condensation, namely matter X waves. These are non-spreading 3D wave-packets which reflect the symmetry of the Laplacian with a negative effective mass along the lattice direction, and are allowed to exist in the absence of any trapping potential even in the limit of non-interacting atoms. This result has also strong implications for optical propagation in periodic structuresComment: 5 pages, 2 figure

    Existence, Stability and Dynamics of Discrete Solitary Waves in a Binary Waveguide Array

    Get PDF
    Recent work has explored binary waveguide arrays in the long-wavelength, near-continuum limit, here we examine the opposite limit, namely the vicinity of the so-called anti-continuum limit. We provide a systematic discussion of states involving one, two and three excited waveguides, and provide comparisons that illustrate how the stability of these states differ from the monoatomic limit of a single type of waveguide. We do so by developing a general theory which systematically tracks down the key eigenvalues of the linearized system. When we find the states to be unstable, we explore their dynamical evolution through direct numerical simulations. The latter typically illustrate, for the parameter values considered herein, the persistence of localized dynamics and the emergence for the duration of our simulations of robust quasi-periodic states for two excited sites. As the number of excited nodes increase, the unstable dynamics feature less regular oscillations of the solution’s amplitude

    Bragg solitons in nonlinear PT-symmetric periodic potentials

    Get PDF
    It is shown that slow Bragg soliton solutions are possible in nonlinear complex parity-time (PT) symmetric periodic structures. Analysis indicates that the PT-symmetric component of the periodic optical refractive index can modify the grating band structure and hence the effective coupling between the forward and backward waves. Starting from a classical modified massive Thirring model, solitary wave solutions are obtained in closed form. The basic properties of these slow solitary waves and their dependence on their respective PT-symmetric gain/loss profile are then explored via numerical simulations.Comment: 6 pages, 4 figures, published in Physical Review

    Soliton Interactions in Perturbed Nonlinear Schroedinger Equations

    Full text link
    We use multiscale perturbation theory in conjunction with the inverse scattering transform to study the interaction of a number of solitons of the cubic nonlinear Schroedinger equation under the influence of a small correction to the nonlinear potential. We assume that the solitons are all moving with the same velocity at the initial instant; this maximizes the effect each soliton has on the others as a consequence of the perturbation. Over the long time scales that we consider, the amplitudes of the solitons remain fixed, while their center of mass coordinates obey Newton's equations with a force law for which we present an integral formula. For the interaction of two solitons with a quintic perturbation term we present more details since symmetries -- one related to the form of the perturbation and one related to the small number of particles involved -- allow the problem to be reduced to a one-dimensional one with a single parameter, an effective mass. The main results include calculations of the binding energy and oscillation frequency of nearby solitons in the stable case when the perturbation is an attractive correction to the potential and of the asymptotic "ejection" velocity in the unstable case. Numerical experiments illustrate the accuracy of the perturbative calculations and indicate their range of validity.Comment: 28 pages, 7 figures, Submitted to Phys Rev E Revised: 21 pages, 6 figures, To appear in Phys Rev E (many displayed equations moved inline to shorten manuscript

    Cuspons, peakons and regular gap solitons between three dispersion curves

    Full text link
    A general wave model with the cubic nonlinearity is introduced to describe a situation when the linear dispersion relation has three branches, which would intersect in the absence of linear couplings between the three waves. Actually, the system contains two waves with a strong linear coupling between them, to which a third wave is then coupled. This model has two gaps in its linear spectrum. Realizations of this model can be made in terms of temporal or spatial evolution of optical fields in, respectively, a planar waveguide or a bulk-layered medium resembling a photonic-crystal fiber. Another physical system described by the same model is a set of three internal wave modes in a density-stratified fluid. A nonlinear analysis is performed for solitons which have zero velocity in the reference frame in which the group velocity of the third wave vanishes. Disregarding the self-phase modulation (SPM) term in the equation for the third wave, we find two coexisting families of solitons: regular ones, which may be regarded as a smooth deformation of the usual gap solitons in a two-wave system, and cuspons with a singularity in the first derivative at their center. Even in the limit when the linear coupling of the third wave to the first two vanishes, the soliton family remains drastically different from that in the linearly uncoupled system; in this limit, regular solitons whose amplitude exceeds a certain critical value are replaced by peakons. While the regular solitons, cuspons, and peakons are found in an exact analytical form, their stability is tested numerically, which shows that they all may be stable. If the SPM terms are retained, we find that there again coexist two different families of generic stable soliton solutions, namely, regular ones and peakons.Comment: a latex file with the text and 10 pdf files with figures. Physical Review E, in pres

    Spatial beam self-cleaning in second-harmonic generation

    Get PDF
    We experimentally demonstrate the spatial self-cleaning of a highly multimode optical beam, in the process of second-harmonic generation in a quadratic nonlinear potassium titanyl phosphate crystal. As the beam energy grows larger, the output beam from the crystal evolves from a highly speckled intensity pattern into a single, bell-shaped spot, sitting on a low energy background. We demonstrate that quadratic beam cleanup is accompanied by significant self-focusing of the fundamental beam, for both positive and negative signs of the linear phase mismatch close to the phase-matching condition
    corecore