17 research outputs found

    Analysing the impact of far-out sidelobes on the imaging performance of the SKA-LOW telescope

    Get PDF
    The Square Kilometre Array’s Low Frequency instrument (SKA-LOW) will operate in the undersampled regime for most of the frequency band where grating lobes pose particular challenges. To achieve the expected level of sensitivity for SKA-LOW, it is particularly important to understand how interfering sources in both near and far side-lobes of the station beam affect the imaging performance. In this study, we discuss options for station designs, and adopting a random element layout, we assess its effectiveness by investigating how sources far from the main lobe of the station beam degrade images of the target field. These sources have the effect of introducing a noise-like corruption to images, which is called the far sidelobe confusion noise (FSCN). Using OSKAR\tiny{OSKAR}, a software simulator accelerated using graphics processing units, we carried out end-to-end simulations using an all-sky model and telescope configuration representative of the SKA-LOW instrument. The FSCN is a function of both the station beam and the interferometric point spread function, and decreases with increasing observation time until the coverage of the aperture plane no longer improves. Using apodization to reduce the level of near-in sidelobes of the station beam had a notable improvement on the level of the FSCN at low frequencies. Our results indicate that the effects of picking up sources in the sidelobes are worse at low frequencies, where the array is less sparse.This work used the Wilkes GPU cluster at the University of Cambridge High Performance Computing Service (http://www.hpc.cam.ac.uk/), provided by Dell Inc., NVIDIA and Mellanox, and part funded by STFC with industrial sponsorship from Rolls Royce and Mitsubishi Heavy Industries

    DAYENU: a simple filter of smooth foregrounds for intensity mapping power spectra

    Get PDF
    We introduce DPSS Approximate lazY filtEriNg of foregroUnds (DAYENU), a linear, spectral filter for H I intensity mapping that achieves the desirable foreground mitigation and error minimization properties of inverse co-variance weighting with minimal modelling of the underlying data. Beyond 21-cm power-spectrum estimation, our filter is suitable for any analysis where high dynamic-range removal of spectrally smooth foregrounds in irregularly (or regularly) sampled data is required, something required by many other intensity mapping techniques. Our filtering matrix is diagonalized by Discrete Prolate Spheroidal Sequences which are an optimal basis to model band-limited foregrounds in 21-cm intensity mapping experiments in the sense that they maximally concentrate power within a finite region of Fourier space. We show that DAYENU enables the access of large-scale line-of-sight modes that are inaccessible to tapered discrete Fourier transform estimators. Since these modes have the largest SNRs,DAYENU significantly increases the sensitivity of 21-cm analyses over tapered Fourier transforms. Slight modifications allow us to use DAYENU as a linear replacement for iterative delay CLEAN ing (DAYENUREST). We refer readers to the Code section at the end of this paper for links to examples and code

    Imaging and Modeling Data from the Hydrogen Epoch of Reionization Array

    Get PDF
    We analyze data from the Hydrogen Epoch of Reionization Array. This is the third in a series of papers on the closure phase delay-spectrum technique designed to detect the HI 21cm emission from cosmic reionization. We present the details of the data and models employed in the power spectral analysis, and discuss limitations to the process. We compare images and visibility spectra made with HERA data, to parallel quantities generated from sky models based on the GLEAM survey, incorporating the HERA telescope model. We find reasonable agreement between images made from HERA data, with those generated from the models, down to the confusion level. For the visibility spectra, there is broad agreement between model and data across the full band of ∼80\sim 80MHz. However, models with only GLEAM sources do not reproduce a roughly sinusoidal spectral structure at the tens of percent level seen in the observed visibility spectra on scales ∼10\sim 10 MHz on 29 m baselines. We find that this structure is likely due to diffuse Galactic emission, predominantly the Galactic plane, filling the far sidelobes of the antenna primary beam. We show that our current knowledge of the frequency dependence of the diffuse sky radio emission, and the primary beam at large zenith angles, is inadequate to provide an accurate reproduction of the diffuse structure in the models. We discuss implications due to this missing structure in the models, including calibration, and in the search for the HI 21cm signal, as well as possible mitigation techniques

    High-Frequency Electromagnetic Waves on Unshielded Twisted Pairs: Upper Bound on Carrier Frequency

    No full text
    This paper explores the behaviour of the ubiquitous twisted pairs at high frequencies and wideband excitation of twisted pairs up to 12GHz. Although there is a large quantity of papers on twisted pairs, the papers in the literature mostly focus on the sub-1GHz spectrum, where the current digital subscriber line technologies operate. Higher carrier frequencies on twisted pairs can enable the data rates required by the future communication networks; hence, the existing copper infrastructure can be utilised on the last mile complementing the fibre networks. Towards this objective, we derive analytical expression for the electromagnetic fields and characteristic equation of twisted pairs. With these derivations we show a fundamental limit on the operating frequency of twisted pairs beyond which twisted pairs start to radiate and behave like an antenna. To validate our theory through measurements, we designed a microstrip balun in order to excite the differential mode on the twisted pairs. Unlike off-the-shelf devices, this balun has a nearly linear transmission curve across 1-12GHz. This linearity allows us to detect the radiation which would not have been possible with an off-the-shelf device. At the end, we demonstrate that the standard twisted pairs used in the UK can be used up to 5GHz carrier frequency without any radiation effect and this upper-bound can be moved to higher frequencies by decreasing the twist lengths
    corecore