4 research outputs found
Disordered Regions of Mixed Lineage Leukemia 4 (MLL4) Protein Are Capable of RNA Binding
Long non-coding RNAs (lncRNAs) are emerging as important regulators of cellular processes and are extensively involved in the development of different cancers; including leukemias. As one of the accepted methods of lncRNA function is affecting chromatin structure; lncRNA binding has been shown for different chromatin modifiers. Histone lysine methyltransferases (HKMTs) are also subject of lncRNA regulation as demonstrated for example in the case of Polycomb Repressive Complex 2 (PRC2). Mixed Lineage Leukemia (MLL) proteins that catalyze the methylation of H3K4 have been implicated in several different cancers; yet many details of their regulation and targeting remain elusive. In this work we explored the RNA binding capability of two; so far uncharacterized regions of MLL4; with the aim of shedding light to the existence of possible regulatory lncRNA interactions of the protein. We demonstrated that both regions; one that contains a predicted RNA binding sequence and one that does not; are capable of binding to different RNA constructs in vitro. To our knowledge, these findings are the first to indicate that an MLL protein itself is capable of lncRNA binding
PhaSePro
Membraneless organelles (MOs) are dynamic liquid condensates that host a variety of specific cellular processes, such as ribosome biogenesis or RNA degradation. MOs form through liquid-liquid phase separation (LLPS), a process that relies on multivalent weak interactions of the constituent proteins and other macromolecules. Since the first discoveries of certain proteins being able to drive LLPS, it emerged as a general mechanism for the effective organization of cellular space that is exploited in all kingdoms of life. While numerous experimental studies report novel cases, the computational identification of LLPS drivers is lagging behind, and many open questions remain about the sequence determinants, composition, regulation and biological relevance of the resulting condensates. Our limited ability to overcome these issues is largely due to the lack of a dedicated LLPS database. Therefore, here we introduce PhaSePro (https://phasepro.elte.hu), an openly accessible, comprehensive, manually curated database of experimentally validated LLPS driver proteins/protein regions. It not only provides a wealth of information on such systems, but improves the standardization of data by introducing novel LLPS-specific controlled vocabularies. PhaSePro can be accessed through an appealing, user-friendly interface and thus has definite potential to become the central resource in this dynamically developing field