24 research outputs found

    Impacts of Agricultural Practices on Insecticide Resistance in the Malaria Vector Anopheles arabiensis in Khartoum State, Sudan.

    Get PDF
    BACKGROUND Agricultural pesticides may play a profound role in selection of resistance in field populations of mosquito vectors. The objective of this study is to investigate possible links between agricultural pesticide use and development of resistance to insecticides by the major malaria vector Anopheles arabiensis in northern Sudan. METHODOLOGY/PRINCIPAL FINDINGS Entomological surveys were conducted during two agricultural seasons in six urban and peri-urban sites in Khartoum state. Agro-sociological data were collected from 240 farmers subjected to semi-structured questionnaires based on knowledge attitude and practice (KAP) surveys. Susceptibility status of An. arabiensis (n=6000) was assessed in all sites and during each season using WHO bioassay tests to DDT, deltamethrin, permethrin, Malathion and bendiocarb. KAP analysis revealed that pesticide application was common practice among both urban and peri-urban farmers, with organophosphates and carbamates most commonly used. Selection for resistance is likely to be greater in peri-urban sites where farmers apply pesticide more frequently and are less likely to dispose of surpluses correctly. Though variable among insecticides and seasons, broad-spectrum mortality was slightly, but significantly higher in urban than peri-urban sites and most marked for bendiocarb, to which susceptibility was lowest. Anopheles arabiensis from all sites showed evidence of resistance or suspected resistance, especially pyrethroids. However, low-moderate frequencies of the L1014F kdr allele in all sites, which was very strongly associated with DDT, permethrin and deltamethrin survivorship (OR=6.14-14.67) suggests that resistance could increase rapidly. CONCLUSIONS Ubiquitous multiple-resistance coupled with presence of a clear mechanism for DDT and pyrethroids (kdr L1014F) in populations of An. arabiensis from Khartoum-Sudan suggests careful insecticide management is essential to prolong efficacy. Our findings are consistent with agricultural insecticide use as a source of selection for resistance and argue for coordination between the integrated vector control program and the Ministry of Agriculture to permit successful implementation of rational resistance management strategies

    Population genetic structure of Aedes aegypti subspecies in selected geographical locations in Sudan

    No full text
    Abstract Although knowledge of the composition and genetic diversity of disease vectors is important for their management, this is limiting in many instances. In this study, the population structure and phylogenetic relationship of the two Aedes aegypti subspecies namely Aedes aegypti aegypti (Aaa) and Aedes aegypti formosus (Aaf) in eight geographical areas in Sudan were analyzed using seven microsatellite markers. Hardy–Weinberg Equilibrium (HWE) for the two subspecies revealed that Aaa deviated from HWE among the seven microsatellite loci, while Aaf exhibited departure in five loci and no departure in two loci (A10 and M201). The Factorial Correspondence Analysis (FCA) plots revealed that the Aaa populations from Port Sudan, Tokar, and Kassala clustered together (which is consistent with the unrooted phylogenetic tree), Aaf from Fasher and Nyala populations clustered together, and Gezira, Kadugli, and Junaynah populations also clustered together. The Bayesian cluster analysis structured the populations into two groups suggesting two genetically distinct groups (subspecies). Isolation by distance test revealed a moderate to strong significant correlation between geographical distance and genetic variations (p = 0.003, r = 0.391). The migration network created using divMigrate demonstrated that migration and gene exchange between subspecies populations appear to occur based on their geographical proximity. The genetic structure of the Ae. aegypti subspecies population and the gene flow among them, which may be interpreted as the mosquito vector's capacity for dispersal, were revealed in this study. These findings will help in the improvement of dengue epidemiology research including information on the identity of the target vector/subspecies and the arboviruses vector surveillance program

    Microsatellite‐based analysis reveals Aedes aegypti populations in the Kingdom of Saudi Arabia result from colonization by both the ancestral African and the global domestic forms

    No full text
    Abstract The Aedes aegypti (Linnaeus, 1762) mosquito is the main vector of dengue, chikungunya and Zika and is well established today all over the world. The species comprises two forms: the ancestral form found throughout Africa and a global domestic form that spread to the rest of the tropics and subtropics. In Saudi Arabia, A. aegypti has been known in the southwest since 1956, and previous genetic studies clustered A. aegypti from Saudi Arabia with the global domestic form. The purpose of this study was to assess the genetic structure of A. aegypti in Saudi Arabia and determine their geographic origin. Genetic data for 17 microsatellites were collected for A. aegypti ranging from the southwestern highlands of Saudi Arabia on the border of Yemen to the north‐west in Madinah region as well as from Thailand and Uganda populations (as representatives of the ancestral African and global domestic forms, respectively). The low but significant level of genetic structuring in Saudi Arabia was consistent with long‐distance dispersal capability possibly through road connectivity and human activities, that is, passive dispersal. There are two main genetic groupings in Saudi Arabia, one of which clusters with the Ugandan population and the other with the Thailand population with many Saudi Arabian individuals having mixed ancestry. The hypothesis of genetic admixture of the ancestral African and global domestic forms in Saudi Arabia was supported by approximate Bayesian computational analyses. The extent of admixture varied across Saudi Arabia. African ancestry was highest in the highland area of the Jazan region followed by the lowland Jazan and Sahil regions. Conversely, the western (Makkah, Jeddah and Madinah) and Najran populations corresponded to the global domesticated form. Given potential differences between the forms in transmission capability, ecology and behaviour, the findings here should be taken into account in vector control efforts in Saudi Arabia

    Insecticide resistance bioassay data pooled across sites for mosquitoes collected in each agricultural season in (A) urban and (B) peri-urban sites.

    No full text
    <p>Bars show mean mortality with 95% binomial confidence limits. Solid vertical lines show the WHO mortality threshold for definition of resistant mosquitoes; the dashed lines show the threshold for suspected resistance.</p
    corecore