382 research outputs found

    ARTIFICIAL NEURAL NETWORK PREDICTION OF PERFORMANCE CHARACTERISTICS OF BIOFUEL PRODUCED FROM SWEET POTATOE (IPOMOEA BATATA)

    Get PDF
    Fossil fuel depletion and the harm it causes to the environment has led to the development of alternative fuels. In this research, biofuel (ethanol) was produced and characterized from sweat potatoes. Blends of premium motor spirit with 0% (E0), 2% (E2), 4% (E4), and 10% (E10) of the produced biofuel at various percentages were separately used to power a four-stroke, single-cylinder SI engine on an engine test bed, and data of the engine performance - brake power, brake torque, brake mean effective pressure (BMEP), and the exhaust gas temperature reported in each test. The results of the physicochemical analysis revealed that the physical state of the biofuel is colorless, the viscosity at 300C, density, calorific value, and pH level are 0.9834 mPa.s, 0.85 g/cm3,19 kJ/kg, and 1.82, respectively. It was observed that an increase in ethanol in the blend increases the performance of the engine, although the BMEP at E0 gave the highest value of 0.3 bar compared to other blends.  An artificial neural network (ANN) model for predicting engine performance characteristics was developed, trained, validated, and tested using the reported data. The result of the ANN model revealed that the Levenberg-Marquardt training algorithm (LMTA) with 10 hidden layer neurons offers the best fit for the features for both training, validation, testing, and overall. With the R for training equal 1, validation equal to  0.99468, testing equal to 0.90103, and overall R equal to  0.93842 as compared to the rest in terms of the number of neurons and training algorithms.

    Renewable pine cone biomass derived carbon materials for supercapacitor application

    Get PDF
    The environmental degradation and hazard to human life caused by the depletion of fossils fuels and the urgent need for sustainable energy sources to meet the rising demand in energy has led to the exploration of novel materials that are environmentally friendly, low cost and less hazardous to human life for energy storage application using the green chemistry approach. Herein, we report on the transformation of the readily abundant pine cone biomass into porous carbon via KOH activation and carbonization at 800 C as electrode materials for supercapacitors. The porous carbon material exhibited a mesoporous framework with a specific surface area of 1515 m2 g 1, a high voltage window of 2.0 V, a gravimetric capacitance of 137 F g 1, energy density of 19 W h kg 1 and excellent cyclability in neutral 1 M Na2SO4 electrolyte for a symmetric carbon/carbon electrode cell. The result shows that the material is robust and shows great promise with neutral electrolytes in high-performance energystorage devices.South African Research Chairs Initiative of the Department of Science and Technology and National Research Foundation of South Africa (Grant No. 97994).http://www.rsc.orgadvances2017-07-31hb2016Institute of Applied MaterialsPhysic

    Coniferous pine biomass : a novel insight into sustainable carbon materials for supercapacitors electrode

    Get PDF
    Low-cost biomass-derived activated porous carbon from natural pine cones is synthesized using hydrothermal approach followed by KOH activation and carbonization. The produced carbon materials have a high surface area of 1515 m2 g1 with a well-developed meso/micropores structure which is advantageous and favorable for mass transfer and ion accommodation for fast rate performance by providing pathways for electrolyte permeation and contact probability. Symmetric device fabricated using the obtained carbon material as electrode, exhibited good electrochemical performance with no degradation of capacitance after voltage holding at 1 V for about 60 h demonstrating good rate capability of the fabricated device. The results demonstrate the exciting potential of the pine cone derived carbons as a promising candidate for high-performance electrode materials for supercapacitors if fully explored.The South African Research Chairs Initiative of the Department of Science and Technology and National Research Foundation of South Africa (Grant No. 97994).http://www.elsevier.com/locate/matchemphys2017-10-31hb2016Physic

    ANTI-INFLAMMATORY ACTIVITY OF CRUDE SAPONIN EXTRACTS FROM FIVE NIGERIAN MEDICINAL PLANTS

    Get PDF
    Crude saponin extracts of five medicinal plants used in the treatment of inflammatory diseases like rheumatoid arthritis, gout and haemorrhoids were screened for anti-inflammatory activity using carrageenan-induced rat paw oedema test. These plants were the whole plant of Schwenkia americana Linn (WSA), the rhizomes of Asparagus africanus Lam (RAA), the leaves of Dichrostachys cinerea Linn (LDC), the stem bark of Ficus iteophylla Miq (BFI) and the leaves of Indigofera pulchra Willd (LIP). A modify traditional method of crude saponins extraction was used to give the following percentage yields: WSA-2.74%, RAA-3.59%, LDC-1.62%, BFI-0.81% and LIP-1.57% respectively. Thin-layer chromatography was used to identify the type of saponins present in the extracts. The acute toxicity study of the crude saponin extracts in mice gave the following intraperitoneal LD50: WSA-471.2mg/kg, RAA- 1264.9mg/kg, LDC-1264.9mg/kg, BFI-118.3mg/kg and LIP-1264.9mg/kg respectively. The anti-inflammatory study of the extracts showed statistically significant (

    Activated carbon derived from tree bark biomass with promising material properties for supercapacitors

    Get PDF
    Activated carbon from tree bark (ACB) has been synthesized by a facile and environmentally friendly activation and carbonization process at different temperatures (600, 700 and 800 °C) using potassium hydroxide (KOH) pellets as an activation agent with different mass loading. The physicochemical and microstructural characteristics of the as-obtained material revealed interconnected microporous/mesoporous architecture with increasing trend in specific surface area (SSA) as carbonization temperatures rises. The SSA values of up to 1018 m2 g−1 and a high pore volume of 0.67 cm3 g−1 were obtained. The potential of the ACB material as suitable supercapacitor electrode was investigated in both a three and two-electrode configuration in different neutral aqueous electrolytes. The electrodes exhibited electric double-layer capacitor (EDLC) behaviour in all electrolytes with the Na2SO4 electrolyte working reversibly in both the negative (−0.80 V to −0.20 V) and positive (0.0 V to 0.6 V) operating potentials. A specific capacitance (Cs) of up to 191 F g−1 at a current density of 1 A g−1 was obtained for the optimized ACB electrode material in 1 M Na2SO4 electrolyte. A symmetric device fabricated exhibited specific Cs of 114 F g−1 at 0.3 A g−1 and excellent stability with a coulombic efficiency of a 100 % after 5000 constant charge–discharge cycles at 5.0 A g−1 and a low capacitance loss for a floating time of 70 h.The South African Research Chairs Initiative of the Department of Science and Technology, Republic of South Africa and National Research Foundation of South Africa (Grant no. 97994).http://link.springer.com/journal/100082018-03-30hb2016Physic

    Stability studies of polypyrole- derived carbon based symmetric supercapacitor via potentiostatic floating test

    Get PDF
    This work present the synthesis and electrochemical performance of mesoporous carbon material derived from the activation and carbonisation of polypyrole (PPY). Electrochemical performance of the PPY derived carbon was investigated in a two electrode cell in a 6 M KOH alkaline electrolyte. The symmetric device was subjected to floating test (voltage holding) for ~200 h at a voltage of 1.2 V and the specific capacitance as well as the resistance of device was determined after every 10 h of floating. The device exhibited a specific capacitance of 179 F g-1 at 0.5 A g-1 and 158 F g-1 at 10 A g-1. In addition, after floating for ~120 h the resistance was constant with a very slow decrease in capacitance. Beyond ~120 h, a quick decrease in capacitance was observed with a corresponding increase in resistance, indicating a possible deterioration to the electrodes. Remarkably, at the end of floating, the specific capacitance calculated at 5 A g-1 was 120 F g-1 (~25% decay in capacitance from the initial value 160.5 F g-1 at 5 A g-1) suggesting good stability of the device over a long period of time (~8 days).South African Research Chairs Initiative of the Department of Science and Technology and National Research Foundation of South Africa (Grant No. 97994).http://www.elsevier.com/locate/electacta2017-09-30hb2016Physic

    CALMS: Modelling the long-term health and economic impact of Covid-19 using agent-based simulation

    Get PDF
    Data Availability Statement: All data files are available from https://doi.org/10.17633/rd.brunel.19350518 The software is available on https://gitlab.com/anabrunel/calms.Copyright: © 2022 Mintram et al. We present our agent-based CoronAvirus Lifelong Modelling and Simulation (CALMS) model that aspires to predict the lifelong impacts of Covid-19 on the health and economy of a population. CALMS considers individual characteristics as well as comorbidities in calculating the risk of infection and severe disease. We conduct two sets of experiments aiming at demonstrating the validity and capabilities of CALMS. We run simulations retrospectively and validate the model outputs against hospitalisations, ICU admissions and fatalities in a UK population for the period between March and September 2020. We then run simulations for the lifetime of the cohort applying a variety of targeted intervention strategies and compare their effectiveness against the baseline scenario where no intervention is applied. Four scenarios are simulated with targeted vaccination programmes and periodic lockdowns. Vaccinations are targeted first at individuals based on their age and second at vulnerable individuals based on their health status. Periodic lockdowns, triggered by hospitalisations, are tested with and without vaccination programme in place. Our results demonstrate that periodic lockdowns achieve reductions in hospitalisations, ICU admissions and fatalities of 6-8% compared to the baseline scenario, with an associated intervention cost of £173 million per 1,000 people and targeted vaccination programmes achieve reductions in hospitalisations, ICU admissions and fatalities of 89-90%, compared to the baseline scenario, with an associated intervention cost of £51,924 per 1,000 people. We conclude that periodic lockdowns alone are ineffective at reducing health-related outputs over the long-term and that vaccination programmes which target only the clinically vulnerable are sufficient in providing healthcare protection for the population as a whole.EU Horizon 2020 STAMINA project No. 883441 (https://cordis.europa.eu/project/id/883441)
    • …
    corecore