6 research outputs found

    AXL receptor tyrosine kinase in breast cancer : defining novel substrates and pathways involved in cell motility and invasion

    Full text link
    Le cancer du sein est le cancer le plus frĂ©quemment diagnostiquĂ© et le plus mortelle chez la femme, oĂč sa progression vers le stade mĂ©tastatique constitue une menace pour la vie des patientes. La prĂ©sence de mĂ©tastases reprĂ©sente le dĂ©fi clinique central de l'oncologie des tumeurs solides, de sorte que les mĂ©canismes et les voies sous-jacents au processus mĂ©tastatique doivent ĂȘtre mieux dĂ©finis. L'expression aberrante du rĂ©cepteur tyrosine kinase (RTK) AXL a Ă©tĂ© liĂ©e cliniquement Ă  la formation de mĂ©tastases et Ă  l'acquisition d'une rĂ©sistance aux mĂ©dicaments contre le cancer. AXL est un membre de la sous-famille des rĂ©cepteurs tyrosine kinase TAM et intervient dans plusieurs processus biologiques tels que l'attĂ©nuation de la rĂ©ponse immunitaire, l'Ă©limination des cellules apoptotiques et la promotion de la survie cellulaire. L'expression d'AXL dans les tumeurs primaires humaines corrĂšle avec la faible survie des patients. MalgrĂ© sa rĂ©gulation positive prĂ©fĂ©rentielle dans les lignĂ©es cellulaires triple nĂ©gatives / basales B, des Ă©tudes ont montrĂ© que l’expression d’AXL est indĂ©pendante du sous-type de la tumeur mammaire des patients. AXL peut ĂȘtre activĂ© par son ligand GAS6 ou par d'autres RTK. Lors de son activation, AXL induit une signalisation en aval entraĂźnant l'activation d'intermĂ©diaires de signalisation canoniques, notamment MAPK, AKT et PI 3-kinases. Cependant, les voies de signalisation spĂ©cifiques engagĂ©es par AXL pour confĂ©rer un tel pouvoir pro-invasion ne sont pas connues. Ainsi, le but de cette thĂšse est d'identifier des substrats spĂ©cifiques d’AXL et des voies en aval qui jouent un rĂŽle important dans le maintien d'un Ă©tat « EMT » et d'un renforcement du phĂ©notype mĂ©senchymal dans les cellules cancĂ©reuses. À la recherche de rĂ©gulateurs en amont du complexe ELMO/DOCK1 impliquĂ©s dans l’activation de RAC, nous prĂ©sentons au chapitre 2 les protĂ©ines d’échafaudage ELMO en tant que substrats directs et partenaires de liaison d’AXL. GrĂące Ă  des approches de protĂ©omique et de mutagenĂšse, nous rĂ©vĂ©lons que la kinase AXL phosphoryle ELMO1/2 sur un rĂ©sidu tyrosine carboxy-terminal conservĂ©. Dans les cellules cancĂ©reuses du sein, l'activation d'AXL dĂ©pendante de GAS6 a conduit Ă  la phosphorylation endogĂšne d'ELMO2 sur Tyr-713, menant ainsi Ă  la formation du complexe AXL/ELMO. En outre, l'activation de RAC induite par GAS6 dans les cellules cancĂ©reuses du sein dĂ©pendait de l'expression d'ELMO2. Semblable au blocage d’AXL, l'inhibition d’ELMO2 ou l'inhibition pharmacologique de DOCK1 supprime l'invasion des cellules du cancer du sein, qui, selon nous, dĂ©pendait de l'Ă©tat de phosphorylation d'ELMO. Notre travail au chapitre 2 dĂ©finit un nouveau mĂ©canisme par lequel AXL favorise la prolifĂ©ration et l'invasion cellulaire et identifie l'inhibition de la voie ELMO/DOCK comme une cible thĂ©rapeutique potentielle pour arrĂȘter les mĂ©tastases induites par AXL. Bien qu'il soit encore difficile de savoir comment les signaux d’AXL induisent son phĂ©notype pro-invasif, notre travail au Chapitre 3 vise Ă  identifier des substrats et des voies de signalisation spĂ©cifiques qui sont significativement modulĂ©s lors de l'activation d'AXL. Pour y remĂ©dier, nous avons dĂ©fini le phosphoprotĂ©ome de la rĂ©gulation d’AXL dans des cellules cancĂ©reuses du sein triple-nĂ©gatives en utilisant une approche quantitative. Nous rĂ©vĂ©lons qu’AXL module de maniĂšre robuste, parmi de nombreux processus et voies biologiques importants, la phosphorylation d'un rĂ©seau de protĂ©ines d'adhĂ©sion focale (FA) aboutissant Ă  un dĂ©sassemblage plus rapide des FA. De maniĂšre intĂ©ressante, nous avons trouvĂ© que la modulation de la voie FA Ă©tait unique Ă  AXL par rapport Ă  d'autres RTK tels que l'EGFR. En particulier, nous avons trouvĂ© qu’AXL phosphoryle la protĂ©ine NEDD9, modulant la formation du complexe NEDD9/CRKII/DOCK3, qui orchestre la phosphorylation de la pseudo-kinase PEAK1 mĂ©diĂ©e par AXL. Nos donnĂ©es rĂ©vĂšlent un mĂ©canisme distinct par lequel les complexes PEAK1 avec la kinase CSK mĂ©dient la phosphorylation de PXN et le renouvellement des FA induit par AXL. En utilisant l'injection orthotopique de cellules cancĂ©reuses du sein dans le tissu adipeux mammaire des souris et dans la veine de la queue, nous rĂ©vĂ©lons que l'inactivation de PEAK1 par CRISPR diminue la croissance tumorale et les mĂ©tastases in vivo. De plus, notre travail au chapitre 3 rĂ©vĂšle une contribution unique et inattendue de la signalisation d’AXL Ă  la dynamique des FA, rĂ©vĂ©lant un mĂ©canisme longtemps recherchĂ© sous-tendant l'activitĂ© invasive d'AXL. Cette comprĂ©hension approfondie des rĂ©seaux de signalisation rĂ©gulĂ©s par AXL identifie PEAK1 comme une nouvelle cible thĂ©rapeutique dans les tumeurs AXL positives. En conclusion, cette thĂšse a identifiĂ©, pour la premiĂšre fois, le phosphoprotĂ©ome d’AXL et des voies de signalisation spĂ©cifique Ă  AXL, pouvant justifier le rĂŽle du rĂ©cepteur en tant que promoteur de mĂ©tastases et de rĂ©sistance aux mĂ©dicaments. Notre travail rĂ©vĂšle de nouvelles cibles thĂ©rapeutiques qui pourraient avoir un grand potentiel si elles sont utilisĂ©es en thĂ©rapie combinatoire avec l’inhibition d’AXL pour prĂ©venir la formation de mĂ©tastases des tumeurs AXL positives.Breast cancer is the most frequently diagnosed cancer in women where its progression to the metastatic stage poses a threat to the life of patients. The metastatic disease represents the central clinical challenge of solid tumor oncology such that mechanisms and pathways underlying the metastatic process must be better defined. The aberrant expression of the receptor tyrosine kinase (RTK) AXL has been linked clinically to metastasis and acquisition of drug resistance. AXL is a member of the TAM subfamily and functions in several biological processes such as dampening the immune response, clearing apoptotic cells and promoting cell survival. Despite its preferential upregulation in triple negative/basal B cell lines, studies have shown AXL expression in the clinic to be subtype independent. AXL can be activated by its ligand GAS6 or by a crosstalk with other RTKs. Upon its activation, AXL induces downstream signaling resulting in the activation of canonical signaling intermediates including MAPKs, AKT and PI 3-kinases. However, the specific signaling pathways engaged by AXL to confer such enhanced pro-invasion power are not known and the goal of this thesis is to identify AXL-specific substrates and downstream pathways that are behind AXL’s significant role in maintaining an EMT state and reinforced mesenchymal phenotype in cancer cells. In search of upstream regulators of ELMO/DOCK1 complex involved in RAC activation, we reported ELMO scaffolds as direct substrates and binding partners of AXL. Through proteomics and mutagenesis approaches, we revealed phosphorylation of ELMO1/2 by AXL kinase on a conserved carboxyl-terminal tyrosine residue. In breast cancer cells, GAS6-dependent activation of AXL led to endogenous ELMO2 phosphorylation on Tyr-713 and AXL/ELMO complex formation. In addition, GAS6-induced RAC activation in breast cancer cells was dependent on ELMO2 expression and phosphorylation. Our work in chapter 2 defines a new mechanism by which AXL promotes cell proliferation and invasion and identifies inhibition of ELMO/DOCK pathway as a potential therapeutic target to stop AXL-induced metastases. While it still remains elusive how AXL signals to induce its pro-invasive phenotype, our work strove to identify specific substrates and signaling pathways that are significantly modulated upon AXL activation using a quantitative phosphoproteomics approach. By generating GAS6-induced AXL phosphoproteome, we found that AXL robustly modulates, among many different significant biological processes and pathways, the phosphorylation of a network of focal adhesion (FA) proteins culminating in faster FA disassembly. Interestingly, we found AXL modulation of FA pathway to be unique to AXL in comparison with other RTKs such as EGFR. NEDD9 FA protein was identified to be a direct substrate of AXL, where its phosphorylation modulates its complex formation with CRKII/DOCK3, and this subsequently orchestrates the AXL-mediated phosphorylation of the pseudo-kinase PEAK1. Our data revealed a distinct mechanism by which PEAK1 complexes with CSK kinase, mediating PXN phosphorylation and AXL-induced FA turnover. Using in vivo assays such as tail-vein metastasis assay and tumor growth assay, we revealed that gene inactivation of PEAK1 by CRISPR CAS9 decreased tumor growth and metastasis. Furthermore, our work in chapter 3 uncovers an unexpected and unique robust contribution of AXL signaling to FA dynamics revealing a long sought-after mechanism underlying AXL pro-invasive activity. This in-depth understanding of AXL regulated signaling networks identifies PEAK1 as a new therapeutic target in AXL positive tumors. In conclusion, this thesis identified, for the first time, AXL phosphoproteome and AXL specific downstream signaling pathways that may justify AXL’s role as a promoter of metastasis and drug resistance. Our work reveals novel therapeutic drug targets that may hold a great potential if used in combinational therapeutics with AXL inhibition to prevent metastasis of AXL positive tumors

    Casein Kinase IÎł2 Impairs Fibroblasts Actin Stress Fibers Formation and Delays Cell Cycle Progression in G1

    Get PDF
    Actin cytoskeleton remodeling is under the regulation of multiple proteins with various activities. Here, we demonstrate that the Îł2 isoform of Casein Kinase I (CKIÎł2) is part of a novel molecular path regulating the formation of actin stress fibers. We show that overexpression of CKIÎł2 in fibroblasts alters cell morphology by impairing actin stress fibers formation. We demonstrate that this is concomitant with increased phosphorylation of the CDK inhibitor p27Kip and lower levels of activated RhoA, and is dependent on CKIÎł2 catalytic activity. Moreover, we report that roscovitine, a potent inhibitor of cyclin-dependent kinases, including Cdk5, decreases p27Kip protein levels and restores actin stress fibers formation in CKIÎł2 overexpressing cells, suggesting the existence of a CKIÎł2-Cdk5-p27Kip-RhoA pathway in regulating actin remodeling. On the other hand, we also show that in a manner independent of its catalytic activity, CKIÎł2 delays cell cycle progression through G1. Collectively our findings reveal that CKIÎł2 is a novel player in the control of actin cytoskeleton dynamics and cell proliferation

    Structure of the DOCK2-ELMO1 complex provides insights into regulation of the auto-inhibited state.

    Get PDF
    Funder: Gouvernement du Canada | Instituts de Recherche en Santé du Canada | CIHR Skin Research Training Centre (Skin Research Training Centre); doi: https://doi.org/10.13039/501100007202Funder: Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada (NSERC Canadian Network for Research and Innovation in Machining Technology); doi: https://doi.org/10.13039/501100002790DOCK (dedicator of cytokinesis) proteins are multidomain guanine nucleotide exchange factors (GEFs) for RHO GTPases that regulate intracellular actin dynamics. DOCK proteins share catalytic (DOCKDHR2) and membrane-associated (DOCKDHR1) domains. The structurally-related DOCK1 and DOCK2 GEFs are specific for RAC, and require ELMO (engulfment and cell motility) proteins for function. The N-terminal RAS-binding domain (RBD) of ELMO (ELMORBD) interacts with RHOG to modulate DOCK1/2 activity. Here, we determine the cryo-EM structures of DOCK2-ELMO1 alone, and as a ternary complex with RAC1, together with the crystal structure of a RHOG-ELMO2RBD complex. The binary DOCK2-ELMO1 complex adopts a closed, auto-inhibited conformation. Relief of auto-inhibition to an active, open state, due to a conformational change of the ELMO1 subunit, exposes binding sites for RAC1 on DOCK2DHR2, and RHOG and BAI GPCRs on ELMO1. Our structure explains how up-stream effectors, including DOCK2 and ELMO1 phosphorylation, destabilise the auto-inhibited state to promote an active GEF

    Characterization of the interaction between the adaptor protein Nck and the protein kinase PKR

    No full text
    Tight regulation of the double-stranded RNA (dsRNA)-activated protein kinase (PKR) is critical for the maintenance of cellular homeostasis due to its potent inhibitory role on general translation. Previously, we have identified the adaptor protein Nck-1 as a novel cellular regulator of PKR activation through its interaction with PKR. In this study, we further confirmed that Nck-1 limits PKR activation under normal conditions. However, we demonstrate that the control of PKR activation by Nck-1 is reversible, since significant levels of dsRNA override Nck-1's negative control of PKR activation and induce dissociation of Nck-1 from PKR. Our data show that Nck-1 needs to be in full length to interact and modulate PKR. In addition, we observed that the interaction of Nck-1 with PKR is independent of any functional Src-homology domains of Nck-1, but our findings showing that Nck-1 interacts with both the N- and C-terminus of PKR challenge this concept. Nonetheless, we uncovered that upon significant levels of dsRNA, dissociation of Nck-1 from PKR is due to the activation of the catalytic activity of PKR rather than to competition by dsRNA binding or change of PKR conformation during its activation. Finally, we provided further evidence supporting the occurrence of Nck-1 phosphorylation by PKR in vivo. Hence, Nck-1 not only buffers PKR activation but appears to be a substrate of PKR. Therefore, we propose that PKR-mediated phosphorylation is part of the mechanism that promotes Nck-1 dissociation from activated PKR. Taken together, our data confirm Nck-1 as a novel cellular modulator of PKR that limits PKR activation under physiological conditions.La protĂ©ine kinase PKR, activĂ©e par l'ARN double brins (ARNdb), est connue pour jouer un rĂŽle inhibiteur de la traduction des protĂ©ines. La rĂ©gulation de PKR est donc critique pour le maintien de l'homĂ©ostasie cellulaire. Nous avons prĂ©cĂ©demment identifiĂ© la protĂ©ine adaptatrice Nck 1 comme Ă©tant un potentiel rĂ©gulateur de l'activation de PKR, suivant son interaction avec PKR. Dans la prĂ©sente Ă©tude, nous avons Ă©tĂ© en mesure de confirmer que, dans des conditions physiologiques, Nck-1 peut limiter l'activation de PKR par l'ARNdb. Cependant, le contrĂŽle qu'exerce Nck-1 sur PKR est rĂ©versible puisque, lorsque la quantitĂ© d'ARNdb dĂ©passe une certaine concentration, PKR est activĂ©e et alors Nck-1 se dissocie de PKR, l'empĂȘchant ainsi de limiter son activation. Nos donnĂ©es dĂ©montrent Ă©galement que Nck-1 doit ĂȘtre dans sa forme native pour interagir et moduler l'activation de PKR. De plus, il semble que l'interaction entre Nck-1 et PKR ne nĂ©cessite pas que les diffĂ©rents domaines homologues de Src (SH2 et SH3) prĂ©sents chez Nck-1 soient fonctionnels. De plus, nous avons observĂ© que Nck-1 interagit Ă  la fois avec les domaines N- et C-terminaux de PKR. Nous dĂ©montrons Ă©galement que lorsque les niveaux d'ARNdb atteignent un niveau seuil, Nck-1 se dissocie de PKR non pas Ă  cause d'une compĂ©tition avec l'ARNdb, ni Ă  cause d'un changement de conformation de PKR ou son autophosphorylation, mais est plutĂŽt dĂ» Ă  l'activation du domaine catalytique de PKR. De plus, il semble que Nck-1 puisse ĂȘtre phosphorylĂ© par PKR in vivo. Nck-1 est donc non seulement un modulateur de l'activation de PKR mais peut Ă©galement servir de substrat pour PKR. Ceci nous amĂšne donc Ă  proposer que la phosphorylation de Nck-1 par PKR activĂ©e soit responsable du mĂ©canisme de dissociation entre Nck-1 et PKR. En conclusion, nos rĂ©sultats confirment Nck-1 comme Ă©tant un nouveau modulateur cellulaire de PKR, en limitant son activation dans des conditions physiologiques

    AXL confers cell migration and invasion by hijacking a PEAK1-regulated focal adhesion protein network

    No full text
    Aberrant expression of receptor tyrosine kinase AXL is linked to metastasis. AXL can be activated by its ligand GAS6 or by other kinases, but the signaling pathways conferring its metastatic activity are unknown. Here, we define the AXL-regulated phosphoproteome in breast cancer cells. We reveal that AXL stimulates the phosphorylation of a network of focal adhesion (FA) proteins, culminating in faster FA disassembly. Mechanistically, AXL phosphorylates NEDD9, leading to its binding to CRKII which in turn associates with and orchestrates the phosphorylation of the pseudo-kinase PEAK1. We find that PEAK1 is in complex with the tyrosine kinase CSK to mediate the phosphorylation of PAXILLIN. Uncoupling of PEAK1 from AXL signaling decreases metastasis in vivo, but not tumor growth. Our results uncover a contribution of AXL signaling to FA dynamics, reveal a long sought-after mechanism underlying AXL metastatic activity, and identify PEAK1 as a therapeutic target in AXL positive tumors.ISSN:2041-172
    corecore