4 research outputs found

    Statistical Analysis of Rainfall Patterns in Jeddah City, KSA: Future Impacts

    Get PDF
    Recently, the Kingdom of Saudi Arabia (KSA) has been facing significant changes in rainstorm patterns (rainstorm intensities, frequencies, distributions) causing many flash flood events. The city of Jeddah is located in a coastal plain area, in the middle of the western side of the KSA, which represents a clear case of changing rainstorm patterns. Jeddah has been hit by many rainstorm events, which increased dramatically since 2009 (e.g., one in 2009, one in 2011, one in 2015, and another one happened in 2017). However, in 2018 about six rainstorms occurred. Two major flash flood events occurred in the city in November 2009 and in January 2011. There were significant impacts of these two events causing severe flooding. During these events, 113 persons were announced dead (in the 2009 event), and infrastructures and properties were damaged (roads and highways, more than 10,000 homes and 17,000 vehicles). In addition to that, dam failure occurred in the 2011 event. This situation gives clear evidence in changing the climate system that could cause more storms in the future across the KSA. Generally, Jeddah city has a lack of short-duration data in rainfall stations. In addition to that, there are a limited number of studies that have been done in determining rainstorm patterns. Consequently, the approach of the current study will focus on understanding and determining rainstorm patterns in the period between 2011 and 2017 depending on some digital rainfall stations that have been installed recently in Jeddah city. Rainstorm pattern and the method of distribution are the most crucial factors affecting peak flow and volume calculations. Our findings showed that there are two pattern types for the rainstorms in Jeddah city. Finally, a comparison with SCS-type II distribution was carried out

    A Flood Risk Management Program of Wadi Baysh Dam on the Downstream Area: An Integration of Hydrologic and Hydraulic Models, Jizan Region, KSA

    Get PDF
    For public safety, especially for people who dwell in the valley that is located downstream of a dam site, as well as the protection of economic and environmental resources, risk management programs are urgently required all over the world. Despite the high safety standards of dams because of improved engineering and excellent construction in recent times, a zero-risk guarantee is not possible, and accidents can happen, triggered by natural hazards, human actions, or just because the dam is aging. In addition to that is the impact of potential climate change, which may not have been taken into account in the original design. A flood risk management program, which is essential for protecting downstream dam areas, is required. Part of this program is to prepare an inundation map to simulate the impact of dam failure on the downstream areas. The Baysh dam has crucial importance both to protect the downstream areas against flooding, to provide drinking water to cities in the surrounding areas, and to use the excess water for irrigation of the agricultural areas located downstream of the dam. Recently, the Kingdom of Saudi Arabia (KSA) was affected by extraordinary rainstorm events causing many problems in many different areas. One of these events happened along the basin of the Baysh dam, which raised the alarm to the decision makers and to the public to take suitable action before dam failure occurs. The current study deals with a flood risk analysis of Wadi Baysh using an integration of hydrologic and hydraulic models. A detailed field investigation of the dam site and the downstream areas down to the Red Sea coast has been undertaken. Three scenarios were applied to check the dam and the reservoir functionality; the first scenario at 100-and 200-year return period rainfall events, the second scenario according to the Probable Maximum Precipitation (PMP), and the third scenario if the dam fails. Our findings indicated that the Baysh dam and reservoir at 100-and 200-year rainfall events are adequate, however, at the PMP the water will spill out from the spillway at ~8900 m3/s causing flooding to the downstream areas; thus, a well-designed channel along the downstream wadi portion up to the Red Sea coast is required. However, at dam failure, the inundation model indicated that a vast area of the section downstream of the dam will be utterly devastated, causing a significant loss of lives and destruction of urban areas and agricultural lands. Eventually, an effective warning system and flood hazard management system are imperative

    Analysis on causes of flash flood in Jeddah city (Kingdom of Saudi Arabia) of 2009 and 2011 using multi-sensor remote sensing data and GIS

    Get PDF
    The Jeddah city is located in a coastal plain area, in the middle of the western side of the Kingdom of Saudi Arabia, bounded by the Red Sea to the west and mountains to the east. Jeddah city receives rainfall runoff from the foothills through different drainage pathways (wadis). During intense rainfall events, runoff flows westward from the hills and mountains towards the Red Sea, causing flash floods in the urban areas along the pathways of these wadis. Two major flash flood events occurred in Jeddah city during 20 November 2009 - January 2011. These events were characterized by rainfall precipitation values of 70 and 111 mm, respectively. Each flash flood event has duration of three hours. The impact of these two flood events have been disastrous causing extensive flooding that killed 113 people in 2009 and damaged infrastructure and property (more than 10,000 homes and 17,000 vehicles). This study deals with the analysis of the different factors that caused these flash flood events. The results indicate that the causes of these floods are related to a number of factors which play as a major contribution to the worsening of the flood disaster. These factors were classified into the following: geomorphological features, anthropogenic activities (urban changes), network and catchment factors, and rainfall and climatic changes factors. The climatic changes have a major impact on the rainfall intensity and will appear more in the future. Other factors related to the wadis tributaries are narrow passes, and high slope of the wadi has additional impacts in the flash floods in the area. The anthropogenic activities include the proliferation of slums and construction in the valleys coupled with the lack of suitable water streams to accommodate the amount of water flowing and the presence of dirt led to the direction of flow

    A Flood Risk Management Program of Wadi Baysh Dam on the Downstream Area: An Integration of Hydrologic and Hydraulic Models, Jizan Region, KSA

    No full text
    For public safety, especially for people who dwell in the valley that is located downstream of a dam site, as well as the protection of economic and environmental resources, risk management programs are urgently required all over the world. Despite the high safety standards of dams because of improved engineering and excellent construction in recent times, a zero-risk guarantee is not possible, and accidents can happen, triggered by natural hazards, human actions, or just because the dam is aging. In addition to that is the impact of potential climate change, which may not have been taken into account in the original design. A flood risk management program, which is essential for protecting downstream dam areas, is required. Part of this program is to prepare an inundation map to simulate the impact of dam failure on the downstream areas. The Baysh dam has crucial importance both to protect the downstream areas against flooding, to provide drinking water to cities in the surrounding areas, and to use the excess water for irrigation of the agricultural areas located downstream of the dam. Recently, the Kingdom of Saudi Arabia (KSA) was affected by extraordinary rainstorm events causing many problems in many different areas. One of these events happened along the basin of the Baysh dam, which raised the alarm to the decision makers and to the public to take suitable action before dam failure occurs. The current study deals with a flood risk analysis of Wadi Baysh using an integration of hydrologic and hydraulic models. A detailed field investigation of the dam site and the downstream areas down to the Red Sea coast has been undertaken. Three scenarios were applied to check the dam and the reservoir functionality; the first scenario at 100- and 200-year return period rainfall events, the second scenario according to the Probable Maximum Precipitation (PMP), and the third scenario if the dam fails. Our findings indicated that the Baysh dam and reservoir at 100- and 200-year rainfall events are adequate, however, at the PMP the water will spill out from the spillway at ~8900 m3/s causing flooding to the downstream areas; thus, a well-designed channel along the downstream wadi portion up to the Red Sea coast is required. However, at dam failure, the inundation model indicated that a vast area of the section downstream of the dam will be utterly devastated, causing a significant loss of lives and destruction of urban areas and agricultural lands. Eventually, an effective warning system and flood hazard management system are imperative
    corecore