429 research outputs found

    Aerobic Training Affects Fatty Acid Composition of Erythrocyte Membranes

    Get PDF
    The effect of exercise training on the fatty acid composition of erythrocyte membranes was evaluated in an experimental animal model where rats were subjected to a ten-wk aerobic training. Five groups of rats were compared: sedentary rats at 19 or 23 wks of age, rats trained at moderate or high intensity sacrificed at 19 wks of age, and rats trained at high intensity, and sacrificed following 4 weeks of sedentary life. We had already demonstrated that cardioprotection correlates with training intensity and partially persists in detrained rats. Main findings are that rats trained at higher intensity display consistent signs of lipid peroxidation but a lower ω6/ω3 ratio and a lower content of trans fatty acids when compared to rats trained at lower intensity and to older sedentary rats. Trans fatty acids negatively affect cell membrane fluidity and permeability. Detrained rats showed intermediate values. Gene expression evaluation of selected enzymes involved in lipid biosynthesis revealed some of the adaptive mechanisms leading to the maintenance of membrane fatty acid homeostasis following exercise. The decrease in the amount of trans fatty and in the inflammatory pathways (i.e. ω6/ω3 ratio) in high-intensity trained rats underscores the protective effect of high intensity aerobic training

    Development and Characterization of Azithromycin-Loaded Microemulsions: A Promising Tool for the Treatment of Bacterial Skin Infections

    Get PDF
    In recent years, the treatment of bacterial skin infections has been considered a major healthcare issue due to the growing emergence of antibiotic-resistant strains of Staphylococcus aureus. The incorporation of antibiotics in appropriate nanosystems could represent a promising strategy, able to overcome several drawbacks of the topical treatment of infections, including poor drug retention within the skin. The present work aims to develop microemulsions containing azithromycin (AZT), a broad-spectrum macrolide antibiotic. Firstly, AZT solubility in various oils, surfactants and co-surfactants was assessed to select the main components. Subsequently, microemulsions composed of vitamin E acetate, Labrasol (R) and Transcutol (R) P were prepared and characterized for their pH, viscosity, droplet size, zeta potential and ability to release the drug and to promote its retention inside porcine skin. Antimicrobial activity against S. aureus methicillin-resistant strains (MRSA) and the biocompatibility of microemulsions were evaluated. Microemulsions showed an acceptable pH and were characterized by different droplet sizes and viscosities depending on their composition. Interestingly, they provided a prolonged release of AZT and promoted its accumulation inside the skin. Finally, microemulsions retained AZT efficacy on MRSA and were not cytotoxic. Hence, the developed AZT-loaded microemulsions could be considered as useful nanocarriers for the treatment of antibiotic-resistant infections of the skin

    Na+, K+-ATPase activity in children with autism spectrum disorder: Searching for the reason(s) of its decrease in blood cells

    Get PDF
    Na+, K+-ATPase (NKA) activity, which establishes the sodium and potassium gradient across the cell membrane and is instrumental in the propagation of the nerve impulses, is altered in a number of neurological and neuropsychiatric disorders, including autism spectrum disorders (ASD). In the present work, we examined a wide range of biochemical and cellular parameters in the attempt to understand the reason(s) for the severe decrease in NKA activity in erythrocytes of ASD children that we reported previously. NKA activity in leukocytes was found to be decreased independently from alteration in plasma membrane fluidity. The different subunits were evaluated for gene expression in leukocytes and for protein expression in erythrocytes: small differences in gene expression between ASD and typically developing children were not apparently paralleled by differences in protein expression. Moreover, no gross difference in erythrocyte plasma membrane oxidative modifications was detectable, although oxidative stress in blood samples from ASD children was confirmed by increased expression of NRF2 mRNA. Interestingly, gene expression of some NKA subunits correlated with clinical features. Excess inhibitory metals or ouabain-like activities, which might account for NKA activity decrease, were ruled out. Plasma membrane cholesterol, but not phosphatidylcholine and phosphatidlserine, was slighty decreased in erythrocytes from ASD children. Although no compelling results were obtained, our data suggest that alteration in the erytrocyte lipid moiety or subtle oxidative modifications in NKA structure are likely candidates for the observed decrease in NKA activity. These findings are discussed in the light of the relevance of NKA in ASD. Autism Research 2018. \ua9 2018 The Authors. Autism Research published by International Society for Autism Research and Wiley Periodicals, Inc. Lay Summary: The activity of the cell membrane enzyme NKA, which is instrumental in the propagation of the nerve impulses, is severely decreased in erythrocytes from ASD children and in other brain disorders, yet no explanation has been provided for this observation. We strived to find a biological/biochemical cause of such alteration, but most queries went unsolved because of the complexity of NKA regulation. As NKA activity is altered in many brain disorders, we stress the relevance of studies aimed at understanding its regulation in ASD

    Reoperation for persistent or recurrent secondary hyperparathyroidism

    Get PDF
    Background: Secondary hyperparathyroidism is a common acquired disorder seen in chronic renal failure. Its pathophysiology is mainly due to hyperphosphatemia and vitamin D deficiency and resistance. When medical treatment fails, subtotal and total parathyroidectomy with autotransplantation are the standard procedures, although both are associated with high recurrence rates.Methods and Results: 4 patients experienced persistence and 9 relapse. The first 4 were subjected to reoperation after 6 months for the persistence of symptoms due to the finding of a supernumerary adenomatous gland while the remaining patients at the reoperation showed in 5 cases 2 more glands in over thymic position, and 4 an hyperplasia of the residual glandular tissue. A classic cervicotomy was sufficient to remove the residual parathyroid in patients with persistent hyperparathyroidism. For cases of recurrent hyperparathyroidism it was enough a medial approach and sometimes lateral for the complete excision of the hyperplastic tissue. The advent of the intraoperative technique of parathyroid hormone dosage allowed a better performance of the surgical technique for the last 3 patients undergoing reoperation. After reoperation all patients had immediate regression of clinical symptoms with normalization of serum calcium and PTH levels. Conclusions: On the basis of these considerations, diagnostic imaging has a not negligible role because during the first intervention helps to have an idea of the possible location of the glands and thus to avoid the risk of recurrence and relapse due to ectopic or supernumerary tissue

    MANAGEMENT OF LEIOMYOMA OF THE TRANSVERSE COLON: CASE REPORT

    Get PDF
    Colonic leiomyoma is a mesenchymal tumor that arises from the muscularis mucosae or muscularis propria and is composed of well-differentiated smooth muscle cells with no atypia. It is often incidentally found since its growth affects the submucosal layer and the lesion is covered with normal epithelium. Endoscopic ultrasonography is recommended to define the grade of infiltration of the tumor and eventually lymph node involvement. Histological examination is critical to establish the nature of the tumor and its behaviour. In the case of a voluminous tumor surgical treatment is needed. we report case of a patient that underwent colonoscopy showing the presence of a neoformation at 70 cm from ileocecal valve occupying half lumen of transverse colon. A surgical resection was performed and histological analysis confirmed the presence of a leiomyoma

    Proteomic and carbonylation profile analysis of rat skeletal muscles following acute swimming exercise

    Get PDF
    Previous studies by us and other groups characterized protein expression variation following long-term moderate training, whereas the effects of single bursts of exercise are less known. Making use of a proteomic approach, we investigated the effects of acute swimming exercise (ASE) on protein expression and carbonylation patterns in two hind limb muscles: the Extensor Digitorum Longus (EDL) and the Soleus, mostly composed of fast-twitch and slow-twitch fibres, respectively. Carbonylation is one of the most common oxidative modifications of proteins and a marker of oxidative stress. In fact, several studies suggest that physical activity and the consequent increase in oxygen consumption can lead to increase in reactive oxygen and nitrogen species (RONS) production, hence the interest in examining the impact of RONS on skeletal muscle proteins following ASE. Results indicate that protein expression is unaffected by ASE in both muscle types. Unexpectedly, the protein carbonylation level was reduced following ASE. In particular, the analysis found 31 and 5 spots, in Soleus and EDL muscles respectively, whose carbonylation is reduced after ASE. Lipid peroxidation levels in Soleus were markedly reduced as well. Most of the decarbonylated proteins are involved either in the regulation of muscle contractions or in the regulation of energy metabolism. A number of hypotheses may be advanced to account for such results, which will be addressed in future studies

    Cytochalasin B Influences Cytoskeletal Organization and Osteogenic Potential of Human Wharton's Jelly Mesenchymal Stem Cells

    Get PDF
    Among perinatal stem cells of the umbilical cord, human Wharton's jelly mesenchymal stem cells (hWJ-MSCs) are of great interest for cell-based therapy approaches in regenerative medicine, showing some advantages over other MSCs. In fact, hWJ-MSCs, placed between embryonic and adult MSCs, are not tumorigenic and are harvested with few ethical concerns. Furthermore, these cells can be easily cultured in vitro, maintaining both stem properties and a high proliferative rate for several passages, as well as trilineage capacity of differentiation. Recently, it has been demonstrated that cytoskeletal organization influences stem cell biology. Among molecules able to modulate its dynamics, Cytochalasin B (CB), a cyto-permeable mycotoxin, influences actin microfilament polymerization, thus affecting several cell properties, such as the ability of MSCs to differentiate towards a specific commitment. Here, we investigated for the first time the effects of a 24 h-treatment with CB at different concentrations (0.1-3 mu M) on hWJ-MSCs. CB influenced the cytoskeletal organization in a dose-dependent manner, inducing changes in cell number, proliferation, shape, and nanomechanical properties, thus promoting the osteogenic commitment of hWJ-MSCs, as confirmed by the expression analysis of osteogenic/autophagy markers

    Oxidative stress and erythrocyte membrane alterations in children with autism: correlation with clinical features

    Get PDF
    It has been suggested that oxidative stress may play a role in the pathogenesis of Autism Spectrum Disorders (ASD), but the literature reports somewhat contradictory results. To further investigate the issue, we evaluated a high number of peripheral oxidative stress parameters, and some related issues such as erythrocyte membrane functional features and lipid composition. Twenty-one autistic children (Au) aged 5 to 12 years, were gender and age-matched with 20 typically developing children (TD). Erythrocyte thiobarbituric acid reactive substances, urinary isoprostane and hexanoyl-lysine adduct levels were elevated in Au, thus confirming the occurrence of an imbalance of the redox status of Au, whilst other oxidative stress markers or associated parameters (urinary 8-oxo-dG, plasma radical absorbance capacity and carbonyl groups, erythrocyte superoxide dismutase and catalase activities) were unchanged. A very significant reduction of Na+/K+-ATPase activity (-66%, p<0.0001), a reduction of erythrocyte membrane fluidity and alteration in erythrocyte fatty acid membrane profile (increase in monounsaturated fatty acids, decrease in EPA and DHA-\u3c93 with a consequent increase in \u3c96/\u3c93 ratio) were found in Au compared to TD, without change in membrane sialic acid content. Some Au clinical features appear to be correlated with these findings; in particular, hyperactivity score appears to be related with some parameters of the lipidomic profile and membrane fluidity. Oxidative stress and erythrocyte membrane alterations may play a role in the pathogenesis of ASD and prompt the development of palliative therapeutic protocols. Moreover, the marked decrease in NKA could be potentially utilized as a peripheral biomarker of ASD

    Cytochalasin B Influences Cytoskeletal Organization and Osteogenic Potential of Human Wharton’s Jelly Mesenchymal Stem Cells

    Get PDF
    Among perinatal stem cells of the umbilical cord, human Wharton’s jelly mesenchymal stem cells (hWJ-MSCs) are of great interest for cell-based therapy approaches in regenerative medicine, showing some advantages over other MSCs. In fact, hWJ-MSCs, placed between embryonic and adult MSCs, are not tumorigenic and are harvested with few ethical concerns. Furthermore, these cells can be easily cultured in vitro, maintaining both stem properties and a high proliferative rate for several passages, as well as trilineage capacity of differentiation. Recently, it has been demonstrated that cytoskeletal organization influences stem cell biology. Among molecules able to modulate its dynamics, Cytochalasin B (CB), a cyto-permeable mycotoxin, influences actin microfilament polymerization, thus affecting several cell properties, such as the ability of MSCs to differentiate towards a specific commitment. Here, we investigated for the first time the effects of a 24 h-treatment with CB at different concentrations (0.1–3 μM) on hWJ-MSCs. CB influenced the cytoskeletal organization in a dose-dependent manner, inducing changes in cell number, proliferation, shape, and nanomechanical properties, thus promoting the osteogenic commitment of hWJ-MSCs, as confirmed by the expression analysis of osteogenic/autophagy markers
    • …
    corecore