18,373 research outputs found

    Irreducible pseudo 2-factor isomorphic cubic bipartite graphs

    Full text link
    A bipartite graph is {\em pseudo 2--factor isomorphic} if all its 2--factors have the same parity of number of circuits. In \cite{ADJLS} we proved that the only essentially 4--edge-connected pseudo 2--factor isomorphic cubic bipartite graph of girth 4 is K3,3K_{3,3}, and conjectured \cite[Conjecture 3.6]{ADJLS} that the only essentially 4--edge-connected cubic bipartite graphs are K3,3K_{3,3}, the Heawood graph and the Pappus graph. There exists a characterization of symmetric configurations n3n_3 %{\bf decide notation and how to use it in the rest of the paper} due to Martinetti (1886) in which all symmetric configurations n3n_3 can be obtained from an infinite set of so called {\em irreducible} configurations \cite{VM}. The list of irreducible configurations has been completed by Boben \cite{B} in terms of their {\em irreducible Levi graphs}. In this paper we characterize irreducible pseudo 2--factor isomorphic cubic bipartite graphs proving that the only pseudo 2--factor isomorphic irreducible Levi graphs are the Heawood and Pappus graphs. Moreover, the obtained characterization allows us to partially prove the above Conjecture

    Efficiency of a Brownian information machine

    Full text link
    A Brownian information machine extracts work from a heat bath through a feedback process that exploits the information acquired in a measurement. For the paradigmatic case of a particle trapped in a harmonic potential, we determine how power and efficiency for two variants of such a machine operating cyclically depend on the cycle time and the precision of the positional measurements. Controlling only the center of the trap leads to a machine that has zero efficiency at maximum power whereas additional optimal control of the stiffness of the trap leads to an efficiency bounded between 1/2, which holds for maximum power, and 1 reached even for finite cycle time in the limit of perfect measurements.Comment: 9 pages, 2 figure

    On the absorption and production cross sections of KK and KK^*

    Get PDF
    We have computed the isospin and spin averaged cross sections of the processes πKρK\pi K^*\to \rho K and ρKπK\rho K^*\to \pi K, which are crucial in the determination of the abundances of KK^* and KK in heavy ion collisions. Improving previous calculations, we have considered several mechanisms which were missing, such as the exchange of axial and vector resonances (K1(1270)K_1(1270), K2(1430)K^*_2(1430), h1(1170)h_1(1170), etc...) and also other processes such as πKωK,ϕK\pi K^*\to \omega K, \phi K and ωK,ϕKπK\omega K^*,\,\phi K^*\to \pi K. We find that some of these mechanisms give important contributions to the cross section. Our results also suggest that, in a hadron gas, KK^* production might be more important than its absorption
    corecore