8,462 research outputs found

    Business Solution to Overcrowding and Inflation

    Get PDF

    Socioeconomic disadvantage in childhood as a predictor of excessive gestational weight gain and obesity in midlife adulthood.

    Get PDF
    BackgroundLower childhood socioeconomic position is associated with greater risk of adult obesity among women, but not men. Pregnancy-related weight changes may contribute to this gender difference. The objectives of this study were to determine the associations between: 1. childhood socioeconomic disadvantage and midlife obesity; 2. excessive gestational weight gain (GWG) and midlife obesity; and 3. childhood socioeconomic disadvantage and excessive GWG, among a representative sample of childbearing women.MethodsWe constructed marginal structural models for seven measures of childhood socioeconomic position for 4780 parous women in the United States, using National Longitudinal Survey of Youth (1979-2010) data. Institute of Medicine definitions were used for excessive GWG; body mass index ≥30 at age 40 defined midlife obesity. Analyses were separated by race/ethnicity. Additionally, we estimated controlled direct effects of childhood socioeconomic disadvantage on midlife obesity under a condition of never gaining excessively in pregnancy.ResultsLow parental education, but not other measures of childhood disadvantage, was associated with greater midlife obesity among non-black non-Hispanic women. Among black and Hispanic mothers, childhood socioeconomic disadvantage was not consistently associated with midlife obesity. Excessive GWG was associated with greater midlife obesity in all racial/ethnic groups. Childhood socioeconomic disadvantage was not statistically significantly associated with excessive GWG in any group. Controlled direct effects were not consistently weaker than total effects.ConclusionsChildhood socioeconomic disadvantage was associated with adult obesity, but not with excessive gestational weight gain, and only for certain disadvantage measures among non-black non-Hispanic mothers. Prevention of excessive GWG may benefit all groups through reducing obesity, but excessive GWG does not appear to serve as a mediator between childhood socioeconomic position and adult obesity in women

    Site Characterization Using Integrated Imaging Analysis Methods on Satellite Data of the Islamabad, Pakistan, Region

    Get PDF
    We develop an integrated digital imaging analysis approach to produce a first-approximation site characterization map for Islamabad, Pakistan, based on remote-sensing data. We apply both pixel-based and object-oriented digital imaging analysis methods to characterize detailed (1:50,000) geomorphology and geology from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite imagery. We use stereo-correlated relative digital elevation models (rDEMs) derived from ASTER data, as well as spectra in the visible near-infrared (VNIR) to thermal infrared (TIR) domains. The resulting geomorphic units in the study area are classified as mountain (including the Margala Hills and the Khairi Murat Ridge), piedmont, and basin terrain units. The local geologic units are classified as limestone in the Margala Hills and the Khairi Murat Ridge and sandstone rock types for the piedmonts and basins. Shear-wave velocities for these units are assigned in ranges based on established correlations in California. These ranges include Vs30-values to be greater than 500 m/sec for mountain units, 200–600 m/sec for piedmont units, and less than 300 m/sec for basin units. While the resulting map provides the basis for incorporating site response in an assessment of seismic hazard for Islamabad, it also demonstrates the potential use of remote-sensing data for site characterization in regions where only limited conventional mapping has been done

    Uplift and subsidence associated with the great Aceh-Andaman earthquake of 2004

    Get PDF
    Rupture of the Sunda megathrust on 26 December 2004 produced broad regions of uplift and subsidence. We define the pivot line separating these regions as a first step in defining the lateral extent and the downdip limit of rupture during that great M_w ≈ 9.2 earthquake. In the region of the Andaman and Nicobar islands we rely exclusively on the interpretation of satellite imagery and a tidal model. At the southern limit of the great rupture we rely principally on field measurements of emerged coral microatolls. Uplift extends from the middle of Simeulue Island, Sumatra, at ~2.5°N, to Preparis Island, Myanmar (Burma), at ~14.9°N. Thus the rupture is ~1600 km long. The distance from the pivot line to the trench varies appreciably. The northern and western Andaman Islands rose, whereas the southern and eastern portion of the islands subsided. The Nicobar Islands and the west coast of Aceh province, Sumatra, subsided. Tilt at the southern end of the rupture is steep; the distance from 1.5 m of uplift to the pivot line is just 60 km. Our method of using satellite imagery to recognize changes in elevation relative to sea surface height and of using a tidal model to place quantitative bounds on coseismic uplift or subsidence is a novel approach that can be adapted to other forms of remote sensing and can be applied to other subduction zones in tropical regions

    Eigenvalue Estimation of Differential Operators

    Full text link
    We demonstrate how linear differential operators could be emulated by a quantum processor, should one ever be built, using the Abrams-Lloyd algorithm. Given a linear differential operator of order 2S, acting on functions psi(x_1,x_2,...,x_D) with D arguments, the computational cost required to estimate a low order eigenvalue to accuracy Theta(1/N^2) is Theta((2(S+1)(1+1/nu)+D)log N) qubits and O(N^{2(S+1)(1+1/nu)} (D log N)^c) gate operations, where N is the number of points to which each argument is discretized, nu and c are implementation dependent constants of O(1). Optimal classical methods require Theta(N^D) bits and Omega(N^D) gate operations to perform the same eigenvalue estimation. The Abrams-Lloyd algorithm thereby leads to exponential reduction in memory and polynomial reduction in gate operations, provided the domain has sufficiently large dimension D > 2(S+1)(1+1/nu). In the case of Schrodinger's equation, ground state energy estimation of two or more particles can in principle be performed with fewer quantum mechanical gates than classical gates.Comment: significant content revisions: more algorithm details and brief analysis of convergenc

    Quantum Computational Complexity in the Presence of Closed Timelike Curves

    Full text link
    Quantum computation with quantum data that can traverse closed timelike curves represents a new physical model of computation. We argue that a model of quantum computation in the presence of closed timelike curves can be formulated which represents a valid quantification of resources given the ability to construct compact regions of closed timelike curves. The notion of self-consistent evolution for quantum computers whose components follow closed timelike curves, as pointed out by Deutsch [Phys. Rev. D {\bf 44}, 3197 (1991)], implies that the evolution of the chronology respecting components which interact with the closed timelike curve components is nonlinear. We demonstrate that this nonlinearity can be used to efficiently solve computational problems which are generally thought to be intractable. In particular we demonstrate that a quantum computer which has access to closed timelike curve qubits can solve NP-complete problems with only a polynomial number of quantum gates.Comment: 8 pages, 2 figures. Minor changes and typos fixed. Reference adde

    Collapse Dynamics of a Homopolymer: Theory and Simulation

    Full text link
    We present a scaling theory describing the collapse of a homopolymer chain in poor solvent. At time t after the beginning of the collapse, the original Gaussian chain of length N is streamlined to form N/g segments of length R(t), each containing g ~ t monomers. These segments are statistical quantities representing cylinders of length R ~ t^{1/2} and diameter d ~ t^{1/4}, but structured out of stretched arrays of spherical globules. This prescription incorporates the capillary instability. We compare the time-dependent structure factor derived for our theory with that obtained from ultra-large-scale molecular dynamics simulation with explicit solvent. This is the first time such a detailed comparison of theoretical and simulation predictions of collapsing chain structure has been attempted. The favorable agreement between the theoretical and computed structure factors supports the picture of the coarse-graining process during polymer collapse.Comment: 4 pages, 3 figure
    corecore