62 research outputs found

    Transcript expression of inward rectifier potassium channels of Kir2 subfamily in Arctic marine and freshwater fish species

    Get PDF
    Inward rectifier K+ (Kir2) channels are critical for electrical excitability of cardiac myocytes. Here, we examine expression of Kir2 channels in the heart of three Gadiformes species, polar cod (Boreogadus saida) and navaga (Eleginus nawaga) of the Arctic Ocean and burbot (Lota lota) of the temperate lakes to find out the role of Kir2 channels in cardiac adaptation to cold. Five boreal freshwater species: brown trout (Salmo trutta fario), arctic char (Salvelinus alpinus), roach (Rutilus rutilus), perch (Perca fluviatilis) and pike (Esox lucius), and zebrafish (Danio rerio), were included for comparison. Transcript expression of genes encoding Kir2.1a, − 2.1b, − 2.2a, − 2.2b and − 2.4 was studied from atrium and ventricle of thermally acclimated or acclimatized fish by quantitative PCR. Kir2 composition in the polar cod was more diverse than in other species in that all Kir2 isoforms were relatively highly expressed. Kir2 composition of navaga and burbot differed from that of the polar cod as well as from those of other species. The relative expression of Kir2.2 transcripts, especially Kir2.2b, was higher in both atrium and ventricle of navaga and burbot (56–89% from the total Kir2 pool) than in other species (0.1–11%). Thermal acclimation induced only small changes in cardiac Kir2 transcript expression in Gadiformes species. However, Kir2.2b transcripts were upregulated in cold-acclimated navaga and burbot hearts. All in all, the cardiac Kir2 composition seems to be dependent on both phylogenetic position and thermal preference of the fish. © 2019, The Author(s).Academy of Finland: 14955Open access funding provided by University of Eastern Finland (UEF) including Kuopio University Hospital. The authors thank Anita Kervinen for her assistance with the fish. This work was supported by the Academy of Finland (grant number 14955)

    Rotationally induced vortices in optical cavity modes

    Full text link
    We show that vortices appear in the modes of an astigmatic optical cavity when it is put into rotation about its optical axis. We study the properties of these vortices and discuss numerical results for a specific realization of such a set-up. Our method is exact up to first order in the time-dependent paraxial approximation and involves bosonic ladder operators in the spirit of the quantum-mechanical harmonic oscillator.Comment: 8 pages, 5 figures. Accepted for publication in a special issue (singular optics 2008) of Journal of Optics A: Pure and Applied Optic

    Changes in Electrical Activity of Working Myocardium Under Condition of If Current Inhibition

    Get PDF
    © 2015, Springer Science+Business Media New York. The study examined the effect of ZD7288, a blocker of hyperpolarization-activated “funny” current If, on electrical activity in working atrial and ventricular myocardium in rats. In concentrations range from 3×10–6 to 3×10–5 M, the agent significantly increased the duration of action potentials at 50 and 90% repolarization levels in both atrial and ventricular myocardium at the fixed stimulation rate of 5 Hz. The blocker affected neither resting potential nor the upstroke velocity of action potential. In patch-clamp experiments, ZD7288 selectively inhibited If current, but produced no effect on delayed rectifier potassium currents that determine the rate of repolarization. The described effects of ZD7288 are not related to its non-specific effects on the ionic currents except If

    Warmer, faster, stronger: Ca2+ cycling in avian myocardium

    Get PDF
    Birds occupy a unique position in the evolution of cardiac design. Their hearts are capable of cardiac performance on par with, or exceeding that of mammals, and yet the structure of their cardiomyocytes resembles those of reptiles. It has been suggested that birds use intracellular Ca2+ stored within the sarcoplasmic reticulum (SR) to power contractile function, but neither SR Ca2+ content nor the cross-talk between channels underlying Ca2+-induced Ca2+ release (CICR) have been studied in adult birds. Here we used voltage clamp to investigate the Ca2+ storage and refilling capacities of the SR and the degree of trans-sarcolemmal and intracellular Ca2+ channel interplay in freshly isolated atrial and ventricular myocytes from the heart of the Japanese quail (Coturnix japonica). A trans-sarcolemmal Ca2+ current (ICa) was detectable in both quail atrial and ventricular myocytes, and was mediated only by L-type Ca2+ channels. The peak density of ICa was larger in ventricular cells than in atrial cells, and exceeded that reported for mammalian myocardium recorded under similar conditions. Steadystate SR Ca2+ content of quail myocardium was also larger than that reported for mammals, and reached 750.6±128.2 μmol lâ'1 in atrial cells and 423.3±47.2 μmol lâ'1 in ventricular cells at 24°C. We observed SR Ca2+-dependent inactivation of ICa in ventricular myocytes, indicating cross-talk between sarcolemmal Ca2+ channels and ryanodine receptors in the SR. However, this phenomenon was not observed in atrial myocytes. Taken together, these findings help to explain the high-efficiency avian myocyte excitation-contraction coupling with regard to their reptilian-like cellular ultrastructure. © 2020 Company of Biologists Ltd. All rights reserved.The study was supported by the Russian Foundation for Basic Research (19-34-90142 to D.V.A.)

    Effect of ischemic preconditioning and a Kv7 channel blocker on cardiac ischemia-reperfusion injury in rats

    Full text link
    Recently, we found cardioprotective effects of ischemic preconditioning (IPC), and from a blocker of KCNQ voltage-gated K+ channels (KV7), XE991 (10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone), in isolated rat hearts. The purpose of the present study was to investigate the cardiovascular effects of IPC and XE991 and whether they are cardioprotective in intact rats. In conscious rats, we measured the effect of the KV7 channel blocker XE991 on heart rate and blood pressure by use of telemetry. In anesthetized rats, cardiac ischemia was induced by occluding the left coronary artery, and the animals received IPC (2 × 5 min of occlusion), XE991, or a combination. After a 2 h reperfusion period, the hearts were excised, and the area at risk and infarct size were determined. In both anesthetized and conscious rats, XE991 increased blood pressure, and the highest dose (7.5 mg/kg) of XE991 also increased heart rate, and 44% of conscious rats died. XE991 induced marked changes in the electrocardiogram (e.g., increased PR interval and prolonged QTC interval) without changing cardiac action potentials. The infarct size to area at risk ratio was reduced from 53 ± 2% (n = 8) in the vehicle compared to 36 ± 3% in the IPC group (P < 0.05, n = 9). XE991 (0.75 mg/kg) treatment alone or on top of IPC failed to reduce myocardial infarct size. Similar to the effect in isolated hearts, locally applied IPC was cardioprotective in intact animals exposed to ischemia-reperfusion. Systemic administration of XE991 failed to protect the heart against ischemia-reperfusion injury suggesting effects on the autonomic nervous system counteracting the cardioprotection in intact animals. © 2019 Elsevier B.V.Aarhus Universitets ForskningsfondHjerteforeningen: 17-R116-A7616-22074K. Corydon was supported by a scholarship from Aarhus University Research Foundation , U. Simonsen and E.R. Hedegaard were supported by the Danish Heart Foundation (grant 17-R116-A7616-22074 ). The study was also supported by Jens Anker Andersens Foundation, Helge and Peter Kornings Foundation, Direktør Kurt Bønnelycke and wife Mrs Grethe Bønnelyckes Foundation, Helge Peetz and Verner Peetz and wife Vilma Peetz grant. Appendix

    Cardiophysiological responses of the air-breathing Alaska blackfish to cold acclimation and chronic hypoxic submergence at 5°C

    Full text link
    The Alaska blackfish (Dallia pectoralis) remains active at cold temperatures when experiencing aquatic hypoxia without air access. To discern the cardiophysiological adjustments that permit this behaviour, we quantified the effect of acclimation from 15°C to 5°C in normoxia (15N and 5N fish), as well as chronic hypoxic submergence (6-8 weeks; ∼6.3-8.4 kPa; no air access) at 5°C (5H fish), on in vivo and spontaneous heart rate (fH), electrocardiogram, ventricular action potential (AP) shape and duration (APD), the background inward rectifier (IK1) and rapid delayed rectifier (IKr) K+ currents and ventricular gene expression of proteins involved in excitation-contraction coupling. In vivo fH was ∼50% slower in 5N than in 15N fish, but 5H fish did not display hypoxic bradycardia. Atypically, cold acclimation in normoxia did not induce shortening of APD or alter resting membrane potential. Rather, QT interval and APD were ∼2.6-fold longer in 5N than in 15N fish because outward IK1 and IKr were not upregulated in 5N fish. By contrast, chronic hypoxic submergence elicited a shortening of QT interval and APD, driven by an upregulation of IKr. The altered electrophysiology of 5H fish was accompanied by increased gene expression of kcnh6 (3.5-fold; Kv11.2 of IKr), kcnj12 (7.4-fold; Kir2.2 of IK1) and kcnj14 (2.9-fold; Kir2.4 of IK1). 5H fish also exhibited a unique gene expression pattern that suggests modification of ventricular Ca2+ cycling. Overall, the findings reveal that Alaska blackfish exposed to chronic hypoxic submergence prioritize the continuation of cardiac performance to support an active lifestyle over reducing cardiac ATP demand. © 2020. Published by The Company of Biologists LtdThis research was funded by the National Science Foundation, Division of Integrative Organismal Systems (1557818) and UAA Innovate Award (J.A.W.S.); the Russian Science Foundation (19-15-00163) (D.V.A.); Alaska INBRE (IDeA Network of Biomedical Research Excellence from the National Institute of General Medical Sciences of the National Institutes of Health under grant number P20GM103395; the content is solely the responsibility of the authors and does not necessarily reflect the official views of the NIH) and LGL Limited Environmental Research Associates graduate research awards (K.L.K.). Deposited in PMC for release after 12 months

    The Minimum-Uncertainty Squeezed States for for Atoms and Photons in a Cavity

    Get PDF
    We describe a six-parameter family of the minimum-uncertainty squeezed states for the harmonic oscillator in nonrelativistic quantum mechanics. They are derived by the action of corresponding maximal kinematical invariance group on the standard ground state solution. We show that the product of the variances attains the required minimum value 1/4 only at the instances that one variance is a minimum and the other is a maximum, when the squeezing of one of the variances occurs. The generalized coherent states are explicitly constructed and their Wigner function is studied. The overlap coefficients between the squeezed, or generalized harmonic, and the Fock states are explicitly evaluated in terms of hypergeometric functions. The corresponding photons statistics are discussed and some applications to quantum optics, cavity quantum electrodynamics, and superfocusing in channeling scattering are mentioned. Explicit solutions of the Heisenberg equations for radiation field operators with squeezing are found.Comment: 27 pages, no figures, 174 references J. Phys. B: At. Mol. Opt. Phys., Special Issue celebrating the 20th anniversary of quantum state engineering (R. Blatt, A. Lvovsky, and G. Milburn, Guest Editors), May 201

    Internal flows and energy circulation in light beams

    Full text link
    We review optical phenomena associated with the internal energy redistribution which accompany propagation and transformations of monochromatic light fields in homogeneous media. The total energy flow (linear-momentum density, Poynting vector) can be divided into spin part associated with the polarization and orbital part associated with the spatial inhomogeneity. We give general description of the internal flows in the coordinate and momentum (angular spectrum) representations for both nonparaxial and paraxial fields. This enables one to determine local densities and integral values of the spin and orbital angular momenta of the field. We analyse patterns of the internal flows in standard beam models (Gaussian, Laguerre-Gaussian, flat-top beam, etc.), which provide an insightful picture of the energy transport. The emphasize is made to the singular points of the flow fields. We describe the spin-orbit and orbit-orbit interactions in the processes of beam focusing and symmetry breakdown. Finally, we consider how the energy flows manifest themselves in the mechanical action on probing particles and in the transformations of a propagating beam subjected to a transverse perturbation.Comment: 50 pages, 21 figures, 173 references. This is the final version of the manuscript (v1) modified in accord to the referee's remarks and with allowance for the recent development. The main changes are: additional discussion of the energy flows in Bessel beams (section 4.1), a lot of new references are added and the Conclusion is shortened and made more accurat

    Changes in Electrical Activity of Working Myocardium Under Condition of If Current Inhibition

    No full text
    © 2015, Springer Science+Business Media New York. The study examined the effect of ZD7288, a blocker of hyperpolarization-activated “funny” current If, on electrical activity in working atrial and ventricular myocardium in rats. In concentrations range from 3×10–6 to 3×10–5 M, the agent significantly increased the duration of action potentials at 50 and 90% repolarization levels in both atrial and ventricular myocardium at the fixed stimulation rate of 5 Hz. The blocker affected neither resting potential nor the upstroke velocity of action potential. In patch-clamp experiments, ZD7288 selectively inhibited If current, but produced no effect on delayed rectifier potassium currents that determine the rate of repolarization. The described effects of ZD7288 are not related to its non-specific effects on the ionic currents except If

    Carbon monoxide modulates electrical activity of murine myocardium via cGMP-dependent mechanisms

    No full text
    © 2015, University of Navarra. Carbon monoxide (CO) is critical in cell signaling, and inhalation of gaseous CO can impact cardiovascular physiology. We have investigated electrophysiological effects of CO and their potential cGMP-dependent mechanism in isolated preparations of murine myocardium. The standard microelectrode technique was used to record myocardial action potentials (APs). Exogenous CO (0.96 × 10−4–4.8 × 10−4 M) decreased AP duration in atrial and ventricular tissue and accelerated pacemaking activity in sinoatrial node. Inhibitors of heme oxygenases (zinc and tin protoporphyrin IX), which are responsible for endogenous CO production, induced the opposite effects. Inhibitor of soluble guanylate cyclase (sGC), ODQ (10−5 M) halved CO-induced AP shortening, while sGC activator azosidnone (10−5 M-3 × 10−4 M) and cGMP analog BrcGMP (3 × 10−4 M) induced the same effects as CO. To see if CO effects are attributed to differential regulation of phosphodiesterase 2 (PDE2) and 3 (PDE3), we used inhibitors of these enzymes. Milrinone (2 × 10−6 M), selective inhibitor of cGMP-downregulated PDE3, blocked CO-induced rhythm acceleration. EHNA(2 × 10−6 M), which inhibits cGMP-upregulated PDE2, attenuated CO-induced AP shortening, but failed to induce any positive chronotropic effect. Our findings indicate that PDE2 activity prevails in working myocardium, while PDE3 is more active in sinoatrial node. The results suggest that cardiac effects of CO are at least partly attributed to activation of sGC and subsequent elevation of cGMP intracellular content. In sinoatrial node, this leads to PDE3 inhibition, increased cAMP content, and positive chronotropy, while it also causes PDE2 stimulation in working myocardium, thereby enhancing cAMP degradation and producing AP shortening. Thus, CO induces significant alterations of cardiac electrical activity via cGMP-dependent mechanism and should be considered as a novel regulator of cardiac electrophysiology
    corecore