70 research outputs found

    Spectrum of JAG1 gene mutations in Polish patients with Alagille syndrome

    Get PDF
    Alagille syndrome (ALGS) is an autosomal dominant disorder characterized by developmental abnormalities in several organs including the liver, heart, eyes, vertebrae, kidneys, and face. The majority (90-94 %) of ALGS cases are caused by mutations in the JAG1 (JAGGED1) gene, and in a small percent of patients (∼1 %) mutations in the NOTCH2 gene have been described. Both genes are involved in the Notch signaling pathway. To date, over 440 different JAG1 gene mutations and ten NOTCH2 mutations have been identified in ALGS patients. The present study was conducted on a group of 35 Polish ALGS patients and revealed JAG1 gene mutations in 26 of them. Twenty-three different mutations were detected including 13 novel point mutations and six large deletions affecting the JAG1 gene. Review of all mutations identified to date in individuals from Poland allowed us to propose an effective diagnostic strategy based on the mutations identified in the reported patients of Polish descent. However, the distribution of mutations seen in this cohort was not substantively different than the mutation distribution in other reported populations

    Clinico-radiological features, molecular spectrum, and identification of prognostic factors in developmental and epileptic encephalopathy due to inosine triphosphate pyrophosphatase (ITPase) deficiency

    Get PDF
    Developmental and epileptic encephalopathy 35 (DEE 35) is a severe neurological condition caused by biallelic variants in ITPA, encoding inosine triphosphate pyrophosphatase, an essential enzyme in purine metabolism. We delineate the genotypic and phenotypic spectrum of DEE 35, analyzing possible predictors for adverse clinical outcomes. We investigated a cohort of 28 new patients and reviewed previously described cases, providing a comprehensive characterization of 40 subjects. Exome sequencing was performed to identify underlying ITPA pathogenic variants. Brain MRI (magnetic resonance imaging) scans were systematically analyzed to delineate the neuroradiological spectrum. Survival curves according to the Kaplan–Meier method and log-rank test were used to investigate outcome predictors in different subgroups of patients. We identified 18 distinct ITPA pathogenic variants, including 14 novel variants, and two deletions. All subjects showed profound developmental delay, microcephaly, and refractory epilepsy followed by neurodevelopmental regression. Brain MRI revision revealed a recurrent pattern of delayed myelination and restricted diffusion of early myelinating structures. Congenital microcephaly and cardiac involvement were statistically significant novel clinical predictors of adverse outcomes. We refined the molecular, clinical, and neuroradiological characterization of ITPase deficiency, and identified new clinical predictors which may have a potentially important impact on diagnosis, counseling, and follow-up of affected individuals

    Vaccine responses in newborns.

    Get PDF
    Immunisation of the newborn represents a key global strategy in overcoming morbidity and mortality due to infection in early life. Potential limitations, however, include poor immunogenicity, safety concerns and the development of tolerogenicity or hypo-responsiveness to either the same antigen and/or concomitant antigens administered at birth or in the subsequent months. Furthermore, the neonatal immunological milieu is polarised towards Th2-type immunity with dampening of Th1-type responses and impaired humoral immunity, resulting in qualitatively and quantitatively poorer antibody responses compared to older infants. Innate immunity also shows functional deficiency in antigen-presenting cells: the expression and signalling of Toll-like receptors undergo maturational changes associated with distinct functional responses. Nevertheless, the effectiveness of BCG, hepatitis B and oral polio vaccines, the only immunisations currently in use in the neonatal period, is proof of concept that vaccines can be successfully administered to the newborn via different routes of delivery to induce a range of protective mechanisms for three different diseases. In this review paper, we discuss the rationale for and challenges to neonatal immunisation, summarising progress made in the field, including lessons learnt from newborn vaccines in the pipeline. Furthermore, we explore important maternal, infant and environmental co-factors that may impede the success of current and future neonatal immunisation strategies. A variety of approaches have been proposed to overcome the inherent regulatory constraints of the newborn innate and adaptive immune system, including alternative routes of delivery, novel vaccine configurations, improved innate receptor agonists and optimised antigen-adjuvant combinations. Crucially, a dual strategy may be employed whereby immunisation at birth is used to prime the immune system in order to improve immunogenicity to subsequent homologous or heterologous boosters in later infancy. Similarly, potent non-specific immunomodulatory effects may be elicited when challenged with unrelated antigens, with the potential to reduce the overall risk of infection and allergic disease in early life

    Genetic landscape of pediatric acute liver failure of indeterminate origin.

    Get PDF
    BACKGROUND AIMS Pediatric acute liver failure (PALF) is a life-threatening condition. In Europe, main causes are viral infections (12-16%) and inherited metabolic diseases (14-28%). Yet, in up to 50% of cases the underlying etiology remains elusive, challenging clinical management, including liver transplantation. We systematically studied indeterminate PALF cases referred for genetic evaluation by whole-exome sequencing (WES), and analyzed phenotypic and biochemical markers, and the diagnostic yield of WES in this condition. METHODS With this international, multicenter observational study, patients (0-18 y) with indeterminate PALF were analyzed by WES. Data on the clinical and biochemical phenotype were retrieved and systematically analyzed. RESULTS In total, 260 indeterminate PALF patients from 19 countries were recruited between 2011 and 2022, of whom 59 had recurrent PALF (RALF). WES established a genetic diagnosis in 37% of cases (97/260). Diagnostic yield was highest in children with PALF in the first year of life (46%), and in children with RALF (64%). Thirty-six distinct disease genes were identified. Defects in NBAS (n=20), MPV17 (n=8) and DGUOK (n=7) were the most frequent findings. When categorizing, most frequent were mitochondrial diseases (45%), disorders of vesicular trafficking (28%) and cytosolic aminoacyl-tRNA synthetase deficiencies (10%). One-third of patients had a fatal outcome. Fifty-six patients received liver transplants. CONCLUSION This study elucidates a large contribution of genetic causes in PALF of indeterminate origin with an increasing spectrum of disease entities. The high proportion of diagnosed cases and potential treatment implications argue for exome or in future rapid genome sequencing in PALF diagnostics

    Clinico-radiological features, molecular spectrum, and identification of prognostic factors in developmental and epileptic encephalopathy due to inosine triphosphate pyrophosphatase (ITPase) deficiency.

    Get PDF
    Developmental and epileptic encephalopathy 35 (DEE 35) is a severe neurological condition caused by biallelic variants in ITPA, encoding inosine triphosphate pyrophosphatase, an essential enzyme in purine metabolism. We delineate the genotypic and phenotypic spectrum of DEE 35, analyzing possible predictors for adverse clinical outcomes. We investigated a cohort of 28 new patients and reviewed previously described cases, providing a comprehensive characterization of 40 subjects. Exome sequencing was performed to identify underlying ITPA pathogenic variants. Brain MRI (magnetic resonance imaging) scans were systematically analyzed to delineate the neuroradiological spectrum. Survival curves according to the Kaplan-Meier method and log-rank test were used to investigate outcome predictors in different subgroups of patients. We identified 18 distinct ITPA pathogenic variants, including 14 novel variants, and two deletions. All subjects showed profound developmental delay, microcephaly, and refractory epilepsy followed by neurodevelopmental regression. Brain MRI revision revealed a recurrent pattern of delayed myelination and restricted diffusion of early myelinating structures. Congenital microcephaly and cardiac involvement were statistically significant novel clinical predictors of adverse outcomes. We refined the molecular, clinical, and neuroradiological characterization of ITPase deficiency, and identified new clinical predictors which may have a potentially important impact on diagnosis, counseling, and follow-up of affected individuals

    Durability of precipitation in Szczecin in the years 1951-1990

    No full text

    Immune control of SV40-induced tumors in mice.

    No full text
    The ability of mice to mount a cytotoxic T-lymphocyte (CTL) immune response to SV40 T-antigen is determined by the H-2 haplotype of the host; H-2b and k mice are high responders and H-2d mice are low responders. Mice of these 3 H-2 haplotypes were challenged with SV40 and their ability to generate and sustain an antibody response to SV40 T-antigen was found to be equivalent. To investigate the role of the different components of the host immune response in controlling growth of SV40-induced tumors, the tumorigenic potential of freshly established cell lines, obtained by SV40 transformation of cells from normal tissues of inbred strains of mice of 6 H-2 haplotypes, was assessed. Each cell line was tumorigenic in athymic and newborn mice but not in adult syngeneic immunocompetent mice. Cells from these initial SV40-transformed lines were then passaged in athymic (nu/nu) mice, re-established in vitro and again transferred into syngeneic animals. Transfer of H-2d SV40 transformants to low or non-responder mice of the H-2d haplotype resulted in tumor formation in some animals. Cells derived from these tumors expressed both the viral encoded T-antigen and the H-2Dd restriction element. Furthermore, the proportion of animals with tumors varied with the strength of their CTL-responsiveness to SV40 T-antigen in association with H-2Dd. Therefore, in H-2d animals, tumor cell growth appears to result from escape of cells from inefficient CTL surveillance. No tumors were formed by transfer of the in vivo selected H-2b or H-2k SV40 transformants to syngeneic high-responder mice. We therefore investigated the role of CTL in the selection of SV40-transformed cells able to escape immune surveillance. Under conditions of stringent immune selection by CTLs, tumorigenic cells that no longer expressed the relevant H-2 class-I restriction element were obtained. Although interaction between the various immune effector mechanisms may play a role in the recognition and elimination of SV40 transformants, our results were consistent with the hypothesis that the SV40-specific CTL response is the predominant control of SV40 tumor growth

    Tumor induction by simian virus 40 in mice is controlled by long-term persistence of the viral genome and the immune response of the host.

    No full text
    Simian virus 40 (SV40), which transforms mouse cells in vitro, has not been previously observed to cause tumors when injected in immunocompetent mice. We have investigated both the fate of the injected virion in mice and several immunological parameters as potential factors controlling tumorigenicity. We find that although SV40 does not replicate in mouse cells, the viral DNA can persist for many months postinjection; the majority of the viral DNA is found in the cytoplasm, but a small amount of the viral DNA is integrated at multiple sites in the host nuclear DNA. The persistence of the viral genome is independent of the ability of the mouse to mount an SV40 TSTA specific cytotoxic T-cell response and may be attributed to the cytoplasmic location of the majority of the viral genome. However, in long-term studies of SV40-injected mice, genetically identical except for the major histocompatibility complex, we find that tumors were induced in some mice of the H-2d (low cytotoxic T-lymphocyte responder to SV40 TSTA) but not of the H-2k (high responder to SV40 TSTA) haplotype. Thus, a combination of inefficient disposal of the injected virion and inefficient immunological surveillance and elimination of cells containing nuclear SV40 DNA can eventually result in SV40-induced tumors at multiple sites in mice
    corecore