8 research outputs found

    One-Pot Preparation of Metal–Polymer Nanocomposites in Irradiated Aqueous Solutions of 1-Vinyl-1,2,4-triazole and Silver Ions

    No full text
    Metal–polymer nanocomposite polyvinyltriazole–silver nanoparticles were obtained using one-pot synthesis in irradiated aqueous solutions of 1-vinyl-1,2,4-triazole (VT) and silver ions. Gel permeation chromatography data show that upon radiation initiation, the molecular weight of poly(1-vinyl-1,2,4-triazole) increases with increasing monomer concentration. To study the kinetics of polymerization and the features of the radiation–chemical formation of nanoparticles, UV-Vis spectroscopy was used. TEM images show a relatively small average size of the forming nanoparticles (2–3 nm) and a narrow size distribution, which shows the effective stabilization of nanoparticles by triazole substituents at a molar ratio of VT and silver ions of 25/1. The addition of ethyl alcohol was used to increase the efficiency of synthesis and suppress the crosslinking of macromolecules in solution. The results of the work show that aqueous–alcoholic solutions of 1 wt.% VT can be used to obtain soluble nanocomposite materials. 10 wt.% monomer solutions have prospects for use in the preparation of polymer gels filled with nanoparticles

    Water Saturated with Pressurized CO2 as a Tool to Create Various 3D Morphologies of Composites Based on Chitosan and Copper Nanoparticles

    No full text
    Methods for creating various 3D morphologies of composites based on chitosan and copper nanoparticles stabilized by it in carbonic acid solutions formed under high pressure of saturating CO2 were developed. This work includes a comprehensive analysis of the regularities of copper nanoparticles stabilization and reduction with chitosan, studied by IR and UV-vis spectroscopies, XPS, TEM and rheology. Chitosan can partially reduce Cu2+ ions in aqueous solutions to small-sized, spherical copper nanoparticles with a low degree of polydispersity; the process is accompanied by the formation of an elastic polymer hydrogel. The resulting composites demonstrate antimicrobial activity against both fungi and bacteria. Exposing the hydrogels to the mixture of He or H2 gases and CO2 fluid under high pressure makes it possible to increase the porosity of hydrogels significantly, as well as decrease their pore size. Composite capsules show sufficient resistance to various conditions and reusable catalytic activity in the reduction of nitrobenzene to aniline reaction. The relative simplicity of the proposed method and at the same time its profound advantages (such as environmental friendliness, extra purity) indicate an interesting role of this study for various applications of materials based on chitosan and metals

    The Cytoplasmic Tail of Influenza A Virus Hemagglutinin and Membrane Lipid Composition Change the Mode of M1 Protein Association with the Lipid Bilayer

    No full text
    Influenza A virus envelope contains lipid molecules of the host cell and three integral viral proteins: major hemagglutinin, neuraminidase, and minor M2 protein. Membrane-associated M1 matrix protein is thought to interact with the lipid bilayer and cytoplasmic domains of integral viral proteins to form infectious virus progeny. We used small-angle X-ray scattering (SAXS) and complementary techniques to analyze the interactions of different components of the viral envelope with M1 matrix protein. Small unilamellar liposomes composed of various mixtures of synthetic or “native” lipids extracted from Influenza A/Puerto Rico/8/34 (H1N1) virions as well as proteoliposomes built from the viral lipids and anchored peptides of integral viral proteins (mainly, hemagglutinin) were incubated with isolated M1 and measured using SAXS. The results imply that M1 interaction with phosphatidylserine leads to condensation of the lipid in the protein-contacting monolayer, thus resulting in formation of lipid tubules. This effect vanishes in the presence of the liquid-ordered (raft-forming) constituents (sphingomyelin and cholesterol) regardless of their proportion in the lipid bilayer. We also detected a specific role of the hemagglutinin anchoring peptides in ordering of viral lipid membrane into the raft-like one. These peptides stimulate the oligomerization of M1 on the membrane to form a viral scaffold for subsequent budding of the virion from the plasma membrane of the infected cell
    corecore