37 research outputs found

    Comorbid Chronic Pain and Depression: Patient Perspectives on Empathy

    Get PDF
    Clinician empathy is a well-documented component of effective patient/provider communication. Evidence surrounding the association between patient perspectives on clinician empathy and perception of pain management is currently limited, particularly among patients with chronic pain and depression. The aim of this study was to analyze patients’ perspectives on the emergent theme of empathy and describe how patients construct their experiences and expectations surrounding empathic interactions. A secondary analysis of focus group data was designed using grounded theory methodology. Veterans Affairs (VA) and University Primary Care Clinics. Respondents with chronic pain and comorbid depression (N = 18) were 27 to 84 years old (mean 54.8 years), 61% women, 22% black, and 74% white. Study participants highly valued empathy and two types of empathic interactions: empathic listening and empathic action. Patients who provided examples of empathic interactions claimed that others understood, valued, and cared for them. In contrast, patients who perceived a lack of empathy and empathic interactions felt frustrated and uncared for by others (including their physicians) physically and emotionally. Patients with chronic pain and depression claimed that empathy helped them feel understood, believed, taken seriously, and that their needs were met. In demonstrating empathy and engaging in empathic interactions with patients, providers relate better to patients, better understand their life experience, and provide patient-centered care that is meaningful for patients, providers, and the health care systems within which they interact. Future research is needed to purposefully study the effects of empathic interactions on outcomes for patients with chronic pain and comorbid depression

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Earth Return Navigation Analysis for Manned Spacecraft Using Optical and Radiometric Measurements

    No full text
    Future manned space missions will travel beyond low Earth orbit with more stringent navigation requirements and fewer navigation resources than used for the Apollo Program of the 1960s. A study has been performed to assess radiometric and optical tracking capabilities necessary to meet nominal and contingency Earth entry flight path angle requirements. Results indicate that 3 tracking stations will be insufficient for meeting nominal entry requirements, while the performance of a 6 station architecture is dependent on the entry geometry. Optical tracking results indicate that a narrow-angle camera is required for satisfying contingency Earth return requirements

    Autonomous Navigation Performance During The Hartley 2 Comet Flyby

    No full text
    On November 4, 2010, the EPOXI spacecraft performed a 700-km flyby of the comet Hartley 2 as follow-on to the successful 2005 Deep Impact prime mission. EPOXI, an extended mission for the Deep Impact Flyby spacecraft, returned a wealth of visual and infrared data from Hartley 2, marking the fifth time that high-resolution images of a cometary nucleus have been captured by a spacecraft. The highest resolution science return, captured at closest approach to the comet nucleus, was enabled by use of an onboard autonomous navigation system called AutoNav. AutoNav estimates the comet-relative spacecraft trajectory using optical measurements from the Medium Resolution Imager (MRI) and provides this relative position information to the Attitude Determination and Control System (ADCS) for maintaining instrument pointing on the comet. For the EPOXI mission, AutoNav was tasked to enable continuous tracking of a smaller, more active Hartley 2, as compared to Tempel 1, through the full encounter while traveling at a higher velocity. To meet the mission goal of capturing the comet in all MRI science images, position knowledge accuracies of +/- 3.5 km (3-?) cross track and +/- 0.3 seconds (3-?) time of flight were required. A flight-code-in-the-loop Monte Carlo simulation assessed AutoNav's statistical performance under the Hartley 2 flyby dynamics and determined optimal configuration. The AutoNav performance at Hartley 2 was successful, capturing the comet in all of the MRI images. The maximum residual between observed and predicted comet locations was 20 MRI pixels, primarily influenced by the center of brightness offset from the center of mass in the observations and attitude knowledge errors. This paper discusses the Monte Carlo-based analysis that led to the final AutoNav configuration and a comparison of the predicted performance with the flyby performance

    The OPALS Plan for Operations: Use of ISS Trajectory and Attitude Models in the OPALS Pointing Strategy

    No full text
    This paper will discuss the OPALS pointing strategy, focusing on incorporation of ISS trajectory and attitude models to build pointing predictions. Methods to extrapolate an ISS prediction based on past data will be discussed and will be compared to periodically published ISS predictions and Two-Line Element (TLE) predictions. The prediction performance will also be measured against GPS states available in telemetry. The performance of the pointing products will be compared to the allocated values in the OPALS pointing budget to assess compliance with requirements

    Achieving Operational Two-Way Laser Acquisition for OPALS Payload on the International Space Station

    No full text
    The Optical PAyload for Lasercomm Science (OPALS) experiment was installed on the International Space Station (ISS) in April 2014. Developed as a technology demonstration, its objective was to experiment with space-to-ground optical communications transmissions from Low Earth Orbit. More than a dozen successful optical links were established between a Wrightwood, California-based ground telescope and the OPALS flight terminal from June 2014 to September 2014. Each transmission required precise bi-directional pointing to be maintained between the space-based transmitter and ground-based receiver. This was accomplished by acquiring and tracking a laser beacon signal transmitted from the ground telescope to the OPALS flight terminal on the ISS. OPALS demonstrated the ability to nominally acquire the beacon within three seconds at 25deg elevation and maintain lock within 140 rad (3(sigma)) for the full 150-second transmission duration while slewing at rates up to 1deg/sec. Additional acquisition attempts in low elevation and weather-challenged conditions provided valuable insight on the optical link robustness under off-nominal operational conditions

    Leveraging Epistemological Diversity Through Computer-Based Argumentation in the Domain of Probability

    No full text
    Abstract: The paper is a case study of technology-facilitated argumentation. Several graduate students, the first four authors, present and negotiate complementary interpretations of a diagram generated in a computer-simulated stochastic experiment. Individuals use informal visual metaphors, programming, and formal mathematical analysis to ground the diagram, i.e., to achieve a sense of proof, connection, and understanding. The NetLogo modeling-and-simulation environment (Wilensky, 1999) serves to structure the authors ’ grounding, appropriating, and presenting of a complex mathematical construct. We demonstrate individuals ’ implicitly diverse explanatory mechanisms for a shared experience. We show that this epistemological diversity, sometimes thought to undermine learning experiences, can, given appropriate learning environments and technological fluency, foster deeper understanding of mathematics and science

    Upwelling Radiance at 976 nm Measured from Space Using a CCD Camera

    No full text
    The Optical Payload for Lasercomm Science (OPALS) Flight System on-board the International Space Station uses a charge coupled device (CCD) camera for receiving a beacon laser from Earth. Relative measurements of the background contributed by upwelling radiance under diverse illumination conditions and varying terrain is presented. In some cases clouds in the field-of-view allowed a comparison of terrestrial and cloud-top upwelling radiance. In this paper we will report these measurements and examine the extent of agreement with atmospheric model predictions
    corecore