14,684 research outputs found
Gravitational Lensing of the SDSS High-Redshift Quasars
We predict the effects of gravitational lensing on the color-selected
flux-limited samples of z~4.3 and z>5.8 quasars, recently published by the
Sloan Digital Sky Survey (SDSS). Our main findings are: (i) The lensing
probability should be 1-2 orders of magnitude higher than for conventional
surveys. The expected fraction of multiply-imaged quasars is highly sensitive
to redshift and the uncertain slope of the bright end of the luminosity
function, beta_h. For beta_h=2.58 (3.43) we find that at z~4.3 and i*<20.0 the
fraction is ~4% (13%) while at z~6 and z*<20.2 the fraction is ~7% (30%). (ii)
The distribution of magnifications is heavily skewed; sources having the
redshift and luminosity of the SDSS z>5.8 quasars acquire median magnifications
of med(mu_obs)~1.1-1.3 and mean magnifications of ~5-50. Estimates of
the quasar luminosity density at high redshift must therefore filter out
gravitationally-lensed sources. (iii) The flux in the Gunn-Peterson trough of
the highest redshift (z=6.28) quasar is known to be f_lambda<3 10^-19
erg/sec/cm^2/Angstrom. Should this quasar be multiply imaged, we estimate a 40%
chance that light from the lens galaxy would have contaminated the same part of
the quasar spectrum with a higher flux. Hence, spectroscopic studies of the
epoch of reionization need to account for the possibility that a lens galaxy,
which boosts the quasar flux, also contaminates the Gunn-Peterson trough. (iv)
Microlensing by stars should result in ~1/3 of multiply imaged quasars in the
z>5.8 catalog varying by more than 0.5 magnitudes over the next decade. The
median equivalent width would be lowered by ~20% with respect to the intrinsic
value due to differential magnification of the continuum and emission-line
regions.Comment: 27 pages, 10 figures. Expansion on the discussion in
astro-ph/0203116. Replaced with version accepted for publication in Ap
Collective Effects in Linear Spectroscopy of Dipole-Coupled Molecular Arrays
We present a consistent analysis of linear spectroscopy for arrays of nearest
neighbor dipole-coupled two-level molecules that reveals distinct signatures of
weak and strong coupling regimes separated for infinite size arrays by a
quantum critical point. In the weak coupling regime, the ground state of the
molecular array is disordered, but in the strong coupling regime it has
(anti)ferroelectric ordering. We show that multiple molecular excitations
(odd/even in weak/strong coupling regime) can be accessed directly from the
ground state. We analyze the scaling of absorption and emission with system
size and find that the oscillator strengths show enhanced superradiant behavior
in both ordered and disordered phases. As the coupling increases, the single
excitation oscillator strength rapidly exceeds the well known Heitler-London
value. In the strong coupling regime we show the existence of a unique spectral
transition with excitation energy that can be tuned by varying the system size
and that asymptotically approaches zero for large systems. The oscillator
strength for this transition scales quadratically with system size, showing an
anomalous one-photon superradiance. For systems of infinite size, we find a
novel, singular spectroscopic signature of the quantum phase transition between
disordered and ordered ground states. We outline how arrays of ultra cold
dipolar molecules trapped in an optical lattice can be used to access the
strong coupling regime and observe the anomalous superradiant effects
associated with this regime.Comment: 12 pages, 7 figures main tex
Description of Atmospheric Conditions at the Pierre Auger Observatory Using Meteorological Measurements and Models
Atmospheric conditions at the site of a cosmic ray observatory must be known
well for reconstructing observed extensive air showers, especially when
measured using the fluorescence technique. For the Pierre Auger Observatory, a
sophisticated network of atmospheric monitoring devices has been conceived.
Part of this monitoring was a weather balloon program to measure atmospheric
state variables above the Observatory. To use the data in reconstructions of
air showers, monthly models have been constructed. Scheduled balloon launches
were abandoned and replaced with launches triggered by high-energetic air
showers as part of a rapid monitoring system. Currently, the balloon launch
program is halted and atmospheric data from numerical weather prediction models
are used. A description of the balloon measurements, the monthly models as well
as the data from the numerical weather prediction are presented
Calculation of functionals of matrices arising in solid state physics and quantum chemistry
Analytic function calculation of matrices in solid state physics and quantum chemistr
Unidirectional hopping transport of interacting particles on a finite chain
Particle transport through an open, discrete 1-D channel against a mechanical
or chemical bias is analyzed within a master equation approach. The channel,
externally driven by time dependent site energies, allows multiple occupation
due to the coupling to reservoirs. Performance criteria and optimization of
active transport in a two-site channel are discussed as a function of reservoir
chemical potentials, the load potential, interparticle interaction strength,
driving mode and driving period. Our results, derived from exact rate
equations, are used in addition to test a previously developed time-dependent
density functional theory, suggesting a wider applicability of that method in
investigations of many particle systems far from equilibrium.Comment: 33 pages, 8 figure
Scattered Lyman-alpha Radiation Around Sources Before Cosmological Reionization
The spectra of the first galaxies and quasars in the Universe should be
strongly absorbed shortward of their rest-frame Lyman-alpha wavelength by
neutral hydrogen (HI) in the intervening intergalactic medium. However, the
Lyman-alpha line photons emitted by these sources are not eliminated but rather
scatter until they redshift out of resonance and escape due to the Hubble
expansion of the surrounding intergalactic HI. We calculate the resulting
brightness distribution and the spectral shape of the diffuse Lyman-alpha line
emission around high redshift sources, before the intergalactic medium was
reionized. Typically, the Lyman-alpha photons emitted by a source at z=10
scatter over a characteristic angular radius of order 15 arcseconds around the
source and compose a line which is broadened and redshifted by about a thousand
km/s relative to the source. The scattered photons are highly polarized.
Detection of the diffuse Lyman-alpha halos around high redshift sources would
provide a unique tool for probing the neutral intergalactic medium before the
epoch of reionization. On sufficiently large scales where the Hubble flow is
smooth and the gas is neutral, the Lyman-alpha brightness distribution can be
used to determine the cosmological mass densities of baryons and matter.Comment: 21 pages, 5 Postscript figures, accepted by ApJ; figures 1--3
corrected; new section added on the detectability of Lyman alpha halos;
conclusions update
Redshifted 21cm Signatures Around the Highest Redshift Quasars
The Ly-alpha absorption spectrum of the highest redshift quasars indicates
that they are surrounded by giant HII regions, a few Mpc in size. The neutral
gas around these HII regions should emit 21cm radiation in excess of the Cosmic
Microwave Background, and enable future radio telescopes to measure the
transverse extent of these HII regions. At early times, the HII regions expand
with a relativistic speed. Consequently, their measured sizes along the
line-of-sight (via Ly-alpha absorption) and transverse to it (via 21 cm
emission) should have different observed values due to relativistic time-delay.
We show that the combined measurement of these sizes would directly constrain
the neutral fraction of the surrounding intergalactic medium (IGM) as well as
the quasar lifetime. Based on current number counts of luminous quasars at z>6,
an instrument like LOFAR should detect >2 redshifted 21cm shells per field
(with a radius of 11 degrees) around active quasars as bright as those already
discovered by SDSS, and >200 relic shells of inactive quasars per field. We
show that Ly-alpha photons from the quasar are unable to heat the IGM or to
couple the spin and kinetic temperatures of atomic hydrogen beyond the edge of
the HII region. The detection of the IGM in 21cm emission around high redshift
quasars would therefore gauge the presence of a cosmic Ly-alpha background
during the reionization epoch.Comment: 11 pages, 6 figures. Submitted to Ap
Prospects for Redshifted 21-cm observations of quasar HII regions
The introduction of low-frequency radio arrays over the coming decade is
expected to revolutionize the study of the reionization epoch. Observation of
the contrast in redshifted 21cm emission between a large HII region and the
surrounding neutral IGM will be the simplest and most easily interpreted
signature. We find that an instrument like the planned Mileura Widefield Array
Low-Frequency Demonstrator (LFD) will be able to obtain good signal to noise on
HII regions around the most luminous quasars, and determine some gross
geometric properties, e.g. whether the HII region is spherical or conical. A
hypothetical follow-up instrument with 10 times the collecting area of the LFD
(MWA-5000) will be capable of mapping the detailed geometry of HII regions,
while SKA will be capable of detecting very narrow spectral features as well as
the sharpness of the HII region boundary. The MWA-5000 will discover
serendipitous HII regions in widefield observations. We estimate the number of
HII regions which are expected to be generated by quasars. Assuming a late
reionization at z~6 we find that there should be several tens of quasar HII
regions larger than 4Mpc at z~6-8 per field of view. Identification of HII
regions in forthcoming 21cm surveys can guide a search for bright galaxies in
the middle of these regions. Most of the discovered galaxies would be the
massive hosts of dormant quasars that left behind fossil HII cavities that
persisted long after the quasar emission ended, owing to the long recombination
time of intergalactic hydrogen. A snap-shot survey of candidate HII regions
selected in redshifted 21cm image cubes may prove to be the most efficient
method for finding very high redshift quasars and galaxies.Comment: 14 pages, 8 figures. Submitted to Ap
Observing Lense-Thirring Precession in Tidal Disruption Flares
When a star is tidally disrupted by a supermassive black hole (SMBH), the
streams of liberated gas form an accretion disk after their return to
pericenter. We demonstrate that Lense-Thirring precession in the spacetime
around a rotating SMBH can produce significant time evolution of the disk
angular momentum vector, due to both the periodic precession of the disk and
the nonperiodic, differential precession of the bound debris streams. Jet
precession and periodic modulation of disk luminosity are possible
consequences. The persistence of the jetted X-ray emission in the Swift
J164449.3+573451 flare suggests that the jet axis was aligned with the spin
axis of the SMBH during this event.Comment: 4 pages, 4 figures. Accepted for publication in Physical Review
Letters. Minor changes made to match proof
- …