14,470 research outputs found

    Gravitational Lensing of the SDSS High-Redshift Quasars

    Full text link
    We predict the effects of gravitational lensing on the color-selected flux-limited samples of z~4.3 and z>5.8 quasars, recently published by the Sloan Digital Sky Survey (SDSS). Our main findings are: (i) The lensing probability should be 1-2 orders of magnitude higher than for conventional surveys. The expected fraction of multiply-imaged quasars is highly sensitive to redshift and the uncertain slope of the bright end of the luminosity function, beta_h. For beta_h=2.58 (3.43) we find that at z~4.3 and i*<20.0 the fraction is ~4% (13%) while at z~6 and z*<20.2 the fraction is ~7% (30%). (ii) The distribution of magnifications is heavily skewed; sources having the redshift and luminosity of the SDSS z>5.8 quasars acquire median magnifications of med(mu_obs)~1.1-1.3 and mean magnifications of ~5-50. Estimates of the quasar luminosity density at high redshift must therefore filter out gravitationally-lensed sources. (iii) The flux in the Gunn-Peterson trough of the highest redshift (z=6.28) quasar is known to be f_lambda<3 10^-19 erg/sec/cm^2/Angstrom. Should this quasar be multiply imaged, we estimate a 40% chance that light from the lens galaxy would have contaminated the same part of the quasar spectrum with a higher flux. Hence, spectroscopic studies of the epoch of reionization need to account for the possibility that a lens galaxy, which boosts the quasar flux, also contaminates the Gunn-Peterson trough. (iv) Microlensing by stars should result in ~1/3 of multiply imaged quasars in the z>5.8 catalog varying by more than 0.5 magnitudes over the next decade. The median equivalent width would be lowered by ~20% with respect to the intrinsic value due to differential magnification of the continuum and emission-line regions.Comment: 27 pages, 10 figures. Expansion on the discussion in astro-ph/0203116. Replaced with version accepted for publication in Ap

    Collective Effects in Linear Spectroscopy of Dipole-Coupled Molecular Arrays

    Get PDF
    We present a consistent analysis of linear spectroscopy for arrays of nearest neighbor dipole-coupled two-level molecules that reveals distinct signatures of weak and strong coupling regimes separated for infinite size arrays by a quantum critical point. In the weak coupling regime, the ground state of the molecular array is disordered, but in the strong coupling regime it has (anti)ferroelectric ordering. We show that multiple molecular excitations (odd/even in weak/strong coupling regime) can be accessed directly from the ground state. We analyze the scaling of absorption and emission with system size and find that the oscillator strengths show enhanced superradiant behavior in both ordered and disordered phases. As the coupling increases, the single excitation oscillator strength rapidly exceeds the well known Heitler-London value. In the strong coupling regime we show the existence of a unique spectral transition with excitation energy that can be tuned by varying the system size and that asymptotically approaches zero for large systems. The oscillator strength for this transition scales quadratically with system size, showing an anomalous one-photon superradiance. For systems of infinite size, we find a novel, singular spectroscopic signature of the quantum phase transition between disordered and ordered ground states. We outline how arrays of ultra cold dipolar molecules trapped in an optical lattice can be used to access the strong coupling regime and observe the anomalous superradiant effects associated with this regime.Comment: 12 pages, 7 figures main tex

    Description of Atmospheric Conditions at the Pierre Auger Observatory Using Meteorological Measurements and Models

    Full text link
    Atmospheric conditions at the site of a cosmic ray observatory must be known well for reconstructing observed extensive air showers, especially when measured using the fluorescence technique. For the Pierre Auger Observatory, a sophisticated network of atmospheric monitoring devices has been conceived. Part of this monitoring was a weather balloon program to measure atmospheric state variables above the Observatory. To use the data in reconstructions of air showers, monthly models have been constructed. Scheduled balloon launches were abandoned and replaced with launches triggered by high-energetic air showers as part of a rapid monitoring system. Currently, the balloon launch program is halted and atmospheric data from numerical weather prediction models are used. A description of the balloon measurements, the monthly models as well as the data from the numerical weather prediction are presented

    Calculation of functionals of matrices arising in solid state physics and quantum chemistry

    Get PDF
    Analytic function calculation of matrices in solid state physics and quantum chemistr

    Unidirectional hopping transport of interacting particles on a finite chain

    Full text link
    Particle transport through an open, discrete 1-D channel against a mechanical or chemical bias is analyzed within a master equation approach. The channel, externally driven by time dependent site energies, allows multiple occupation due to the coupling to reservoirs. Performance criteria and optimization of active transport in a two-site channel are discussed as a function of reservoir chemical potentials, the load potential, interparticle interaction strength, driving mode and driving period. Our results, derived from exact rate equations, are used in addition to test a previously developed time-dependent density functional theory, suggesting a wider applicability of that method in investigations of many particle systems far from equilibrium.Comment: 33 pages, 8 figure

    Scattered Lyman-alpha Radiation Around Sources Before Cosmological Reionization

    Full text link
    The spectra of the first galaxies and quasars in the Universe should be strongly absorbed shortward of their rest-frame Lyman-alpha wavelength by neutral hydrogen (HI) in the intervening intergalactic medium. However, the Lyman-alpha line photons emitted by these sources are not eliminated but rather scatter until they redshift out of resonance and escape due to the Hubble expansion of the surrounding intergalactic HI. We calculate the resulting brightness distribution and the spectral shape of the diffuse Lyman-alpha line emission around high redshift sources, before the intergalactic medium was reionized. Typically, the Lyman-alpha photons emitted by a source at z=10 scatter over a characteristic angular radius of order 15 arcseconds around the source and compose a line which is broadened and redshifted by about a thousand km/s relative to the source. The scattered photons are highly polarized. Detection of the diffuse Lyman-alpha halos around high redshift sources would provide a unique tool for probing the neutral intergalactic medium before the epoch of reionization. On sufficiently large scales where the Hubble flow is smooth and the gas is neutral, the Lyman-alpha brightness distribution can be used to determine the cosmological mass densities of baryons and matter.Comment: 21 pages, 5 Postscript figures, accepted by ApJ; figures 1--3 corrected; new section added on the detectability of Lyman alpha halos; conclusions update

    Redshifted 21cm Signatures Around the Highest Redshift Quasars

    Full text link
    The Ly-alpha absorption spectrum of the highest redshift quasars indicates that they are surrounded by giant HII regions, a few Mpc in size. The neutral gas around these HII regions should emit 21cm radiation in excess of the Cosmic Microwave Background, and enable future radio telescopes to measure the transverse extent of these HII regions. At early times, the HII regions expand with a relativistic speed. Consequently, their measured sizes along the line-of-sight (via Ly-alpha absorption) and transverse to it (via 21 cm emission) should have different observed values due to relativistic time-delay. We show that the combined measurement of these sizes would directly constrain the neutral fraction of the surrounding intergalactic medium (IGM) as well as the quasar lifetime. Based on current number counts of luminous quasars at z>6, an instrument like LOFAR should detect >2 redshifted 21cm shells per field (with a radius of 11 degrees) around active quasars as bright as those already discovered by SDSS, and >200 relic shells of inactive quasars per field. We show that Ly-alpha photons from the quasar are unable to heat the IGM or to couple the spin and kinetic temperatures of atomic hydrogen beyond the edge of the HII region. The detection of the IGM in 21cm emission around high redshift quasars would therefore gauge the presence of a cosmic Ly-alpha background during the reionization epoch.Comment: 11 pages, 6 figures. Submitted to Ap

    Prospects for Redshifted 21-cm observations of quasar HII regions

    Full text link
    The introduction of low-frequency radio arrays over the coming decade is expected to revolutionize the study of the reionization epoch. Observation of the contrast in redshifted 21cm emission between a large HII region and the surrounding neutral IGM will be the simplest and most easily interpreted signature. We find that an instrument like the planned Mileura Widefield Array Low-Frequency Demonstrator (LFD) will be able to obtain good signal to noise on HII regions around the most luminous quasars, and determine some gross geometric properties, e.g. whether the HII region is spherical or conical. A hypothetical follow-up instrument with 10 times the collecting area of the LFD (MWA-5000) will be capable of mapping the detailed geometry of HII regions, while SKA will be capable of detecting very narrow spectral features as well as the sharpness of the HII region boundary. The MWA-5000 will discover serendipitous HII regions in widefield observations. We estimate the number of HII regions which are expected to be generated by quasars. Assuming a late reionization at z~6 we find that there should be several tens of quasar HII regions larger than 4Mpc at z~6-8 per field of view. Identification of HII regions in forthcoming 21cm surveys can guide a search for bright galaxies in the middle of these regions. Most of the discovered galaxies would be the massive hosts of dormant quasars that left behind fossil HII cavities that persisted long after the quasar emission ended, owing to the long recombination time of intergalactic hydrogen. A snap-shot survey of candidate HII regions selected in redshifted 21cm image cubes may prove to be the most efficient method for finding very high redshift quasars and galaxies.Comment: 14 pages, 8 figures. Submitted to Ap

    Observing Lense-Thirring Precession in Tidal Disruption Flares

    Full text link
    When a star is tidally disrupted by a supermassive black hole (SMBH), the streams of liberated gas form an accretion disk after their return to pericenter. We demonstrate that Lense-Thirring precession in the spacetime around a rotating SMBH can produce significant time evolution of the disk angular momentum vector, due to both the periodic precession of the disk and the nonperiodic, differential precession of the bound debris streams. Jet precession and periodic modulation of disk luminosity are possible consequences. The persistence of the jetted X-ray emission in the Swift J164449.3+573451 flare suggests that the jet axis was aligned with the spin axis of the SMBH during this event.Comment: 4 pages, 4 figures. Accepted for publication in Physical Review Letters. Minor changes made to match proof

    Physics in the colleges

    Get PDF
    • …
    corecore