42 research outputs found

    Proteomic definition of a desmoglein linear determinant common to Pemphigus vulgaris and Pemphigus foliaceous

    Get PDF
    BACKGROUND: A number of autoimmune diseases have been clinically and pathologically characterized. In contrast, target antigens have been identified only in a few cases and, in these few cases, the knowledge of the exact epitopic antigenic sequence is still lacking. Thus the major objective of current work in the autoimmunity field is the identification of the epitopic sequences that are related to autoimmune reactions. Our labs propose that autoantigen peptide epitopes able to evoke humoral (auto)immune response are defined by the sequence similarity to the host proteome. The underlying scientific rationale is that antigen peptides acquire immunoreactivity in the context of their proteomic similarity level. Sequences uniquely owned by a protein will have high potential to evoke an immune reaction, whereas motifs with high proteomic redundancy should be immunogenically silenced by the tolerance phenomenon. The relationship between sequence redundancy and peptide immunoreactivity has been successfully validated in a number of experimental models. Here the hypothesis has been applied to pemphigus diseases and the corresponding desmoglein autoantigens. METHODS: Desmoglein 3 sequence similarity analysis to the human proteome followed by dot-blot/NMR immunoassays were carried out to identify and validate possible epitopic sequences. RESULTS: Computational analysis led to identifying a linear immunodominant desmoglein-3 epitope highly reactive with the sera from Pemphigus vulgaris as well as Pemphigus foliaceous. The epitopic peptide corresponded to the amino acid REWVKFAKPCRE sequence, was located in the extreme N-terminal region (residues 49 to 60), and had low redundancy to the human proteome. Sequence alignment showed that human desmoglein 1 and 3 share the REW-KFAK–RE sequence as a common motif with 75% residue identity. CONCLUSION: This study 1) validates sequence redundancy to autoproteome as a main factor in shaping desmoglein peptide immunogenicity; 2) offers a molecular mechanicistic basis in analyzing the commonality of autoimmune responses exhibited by the two forms of pemphigus; 3) indicates possible peptide-immunotherapeutical approaches for pemphigus diseases

    Potential Immunotherapy for Prostate Cancer: Recombinant Bacille Calmette-Guerin Expressing Prostate Specific Molecules

    Get PDF
    Purpose: The emergence of prostate cancer as a major health issue and the absence of curative treatment for metastatic disease requires the development of new treatment modalities. Prostate specific antigen (PSA) and prostate-specific membrane antigen (PSMA) are possible targets for prostate cancer immunotherapy. We have previously shown that PSA and PSMA can be expressed in recombinant bacille Calmette-Guérin (BCG) strains.Methods: The in vivo immunogenicity of the prostate-specific proteins produced by this recombinant BCG strain were examined by detection of specific antibody responses and delayed-type hypersensitivity (DTH) responses in mice vaccinated with these strains. These immune responses were compared with those of control mice vaccinated with phosphate buffered saline diluent or soluble PSA or PSMA.Results: Mice vaccinated with rBCG-PSA developed low levels of anti-PSA antibodies and strong DTH to PSA.  Mice vaccinated with rBCG-PSMA developed strong DTH to PSMA and no anti-PSMA antibodies. Conclusions: We conclude that recombinant BCG expressing PSA or PSMA induce strong cellular immune responses to these antigens. We propose that the innate adjuvant capacity of BCG could help stimulate a specific immune response against prostate-specific proteins produced by the bacteria, which in turn, could lead to the eradication of undetected metastatic prostate cancer cells in post-surgical patients

    Macrophage Inflammatory Factors Promote Epithelial-Mesenchymal Transition in Breast Cancer

    Get PDF
    The majority of breast cancers (90-95%) arise due to mediators distinct from inherited genetic mutations. One major mediator of breast cancer involves chronic inflammation. M1 macrophages are an integral component of chronic inflammation and the breast cancer tumor microenvironment (TME). Previous studies have demonstrated that up to 50% of the breast tumor comprise of tumor-associated macrophages (TAMs) and increased TAM infiltration has been associated with poor patient prognosis. Furthermore, breast cancer associated deaths are predominantly attributed to invasive cancers and metastasis with epithelial-mesenchymal transition (EMT) being implicated. In this study, we investigated the effects of cellular crosstalk between TAMs and breast cancer using an in vitro model system. M1 polarized THP-1 macrophage conditioned media (CM) was generated and used to evaluate cellular and functional changes of breast cancer lines T47D and MCF-7. We observed that T47D and MCF-7 exhibited a partial EMT phenotype in the presence of activated THP-1 CM. Additionally, MCF-7 displayed a significant increase in migratory and invasive properties. We conclude that M1 secretory factors can promote a partial EMT of epithelial-like breast cancer cells. The targeting of M1 macrophages or their secretory components may inhibit EMT and limit the invasive potential of breast cancer

    Endothelial progenitor cell biology in disease and tissue regeneration

    Get PDF
    Endothelial progenitor cells are increasingly being studied in various diseases ranging from ischemia, diabetic retinopathy, and in cancer. The discovery that these cells can be mobilized from their bone marrow niche to sites of inflammation and tumor to induce neovasculogenesis has afforded a novel opportunity to understand the tissue microenvironment and specific cell-cell interactive pathways. This review provides a comprehensive up-to-date understanding of the physiological function and therapeutic utility of these cells. The emphasis is on the systemic factors that modulate their differentiation/mobilization and survival and presents the challenges of its potential therapeutic clinical utility as a diagnostic and prognostic reagent

    Preliminary data on Pemphigus vulgaris treatment by a proteomics-defined peptide: a case report

    Get PDF
    BACKGROUND: Although described by Hippocrates in 400 B.C., pemphigus disease still needs a safe therapeutical approach, given that the currently used therapies (i.e. corticosteroids and immunosuppressive drugs) often provoke collateral effects. Here we present preliminary data on the possible use of a proteomics derived desmoglein peptide which appears promising in halting disease progression without adverse effects. METHODS: The low-similarity Dsg3(49–60)REWVKFAKPCRE peptide was topically applied for 1 wk onto a lesion in a patient with a late-stage Pemphigus vulgaris (PV) complicated by diabetes and cataract disease. The peptide was applied as an adjuvant in combination with the standard corticosteroid-based immunosuppressive treatment. RESULTS: After 1 wk, the treated PV eroded lesion appeared dimensionally reduced and with an increased rate of re-epithelization when compared to adjacent non-treated lesions. Short-term benefits were: decrease of anti-Dsg antibody titer and reduction of the corticosteroid dosage. Long-term benefits: after two years following the unique 1-wk topical treatment, the decrease of anti-Dsg antibody titer persists. The patient is still at the low cortisone dosage. Adverse effects: no adverse effect could be monitored. CONCLUSION: With the limits inherent to any preliminary study, this case report indicates that topical treatment with Dsg3(49–60)REWVKFAKPCRE peptide may represent a feasible first step in the search for a simple, effective and safe treatment of PV

    Synthetic Toll Like Receptor-4 (TLR-4) Agonist Peptides as a Novel Class of Adjuvants

    Get PDF
    Background: Adjuvants serve as catalysts of the innate immune response by initiating a localized site of inflammation that is mitigated by the interactions between antigens and toll like receptor (TLR) proteins. Currently, the majority of vaccines are formulated with aluminum based adjuvants, which are associated with various side effects. In an effort to develop a new class of adjuvants, agonists of TLR proteins, such as bacterial products, would be natural candidates. Lipopolysaccharide (LPS), a major structural component of gram negative bacteria cell walls, induces the systemic inflammation observed in septic shock by interacting with TLR-4. The use of synthetic peptides of LPS or TLR-4 agonists, which mimic the interaction between TLR-4 and LPS, can potentially regulate cellular signal transduction pathways such that a localized inflammatory response is achieved similar to that generated by adjuvants. Methodology/Principal Findings: We report the identification and activity of several peptides isolated using phage display combinatorial peptide technology, which functionally mimicked LPS. The activity of the LPS-TLR-4 interaction was assessed by NF-kB nuclear translocation analyses in HEK-BLUE TM-4 cells, a cell culture model that expresses only TLR-4, and the murine macrophage cell line, RAW264.7. Furthermore, the LPS peptide mimics were capable of inducing inflammatory cytokine secretion from RAW264.7 cells. Lastly, ELISA analysis of serum from vaccinated BALB/c mice revealed that the LPS peptide mimics act as a functional adjuvant

    A miniature concentrating photovoltaic and thermal system. Energy Convers

    No full text
    Abstract A novel miniature concentrating PV (MCPV) system is presented and analyzed. The system is producing both electrical and thermal energy, which is supplied to a nearby consumer. In contrast to PV/thermal (PV/T) flat collectors, the heat from an MCPV collector is not limited to low-temperature applications. The work reported here refers to the evaluation and preliminary design of the MCPV approach. The heat transport system, the electric and thermal performance, the manufacturing cost, and the resulting cost of energy in case of domestic water heating have been analyzed. The results show that the new approach has promising prospects
    corecore