518 research outputs found
First-order transition of tethered membranes in 3d space
We study a model of phantom tethered membranes, embedded in three-dimensional
space, by extensive Monte Carlo simulations. The membranes have hexagonal
lattice structure where each monomer is interacting with six nearest-neighbors
(NN). Tethering interaction between NN, as well as curvature penalty between NN
triangles are taken into account. This model is new in the sense that NN
interactions are taken into account by a truncated Lennard-Jones potential
including both repulsive and attractive parts. The main result of our study is
that the system undergoes a first-order crumpling transition from low
temperature flat phase to high temperature crumpled phase, in contrast with
early numerical results on models of tethered membranes.Comment: 5 pages, 6 figure
Properties and Performance of Two Wide Field of View Cherenkov/Fluorescence Telescope Array Prototypes
A wide field of view Cherenkov/fluorescence telescope array is one of the
main components of the Large High Altitude Air Shower Observatory project. To
serve as Cherenkov and fluorescence detectors, a flexible and mobile design is
adopted for easy reconfiguring of the telescope array. Two prototype telescopes
have been constructed and successfully run at the site of the ARGO-YBJ
experiment in Tibet. The features and performance of the telescopes are
presented
The Phase Diagram of Crystalline Surfaces
We report the status of a high-statistics Monte Carlo simulation of
non-self-avoiding crystalline surfaces with extrinsic curvature on lattices of
size up to nodes. We impose free boundary conditions. The free energy
is a gaussian spring tethering potential together with a normal-normal bending
energy. Particular emphasis is given to the behavior of the model in the cold
phase where we measure the decay of the normal-normal correlation function.Comment: 9 pages latex (epsf), 4 EPS figures, uuencoded and compressed.
Contribution to Lattice '9
Decarbonising South Africa’s paratransit with hydrogen : a simulated case study
Papers presented virtually at the 41st International Southern African Transport Conference on 10-13 July 2023.As fuel prices climb and the global automotive sector migrates to more sustainable vehicle
technologies, the future of South Africa’s minibus taxis is in flux. The authors’ previous
research has found that battery electric technology struggles to meet all the mobility
requirements of minibus taxis. They investigate the technical feasibility of powering taxis
with hydrogen fuel cells instead. The following results are projected using a custom-built
simulator, and tracking data of taxis based in Stellenbosch, South Africa. Each taxi
requires around 12 kg of hydrogen gas per day to travel an average distance of 360 km.
465 kWh of electricity, or 860 m2 of solar panels, would electrolyse the required green
hydrogen. An economic analysis was conducted on the capital and operational expenses
of a system of ten hydrogen taxis and an electrolysis plant. Such a pilot project requires a
minimum investment of € 3.8 million (R 75 million), for a 20 year period. Although such a
small scale roll-out is technically feasible and would meet taxis’ performance requirements,
the investment cost is too high, making it financially unfeasible. They conclude that a large
scale solution would need to be investigated to improve financial feasibility; however,
South Africa’s limited electrical generation capacity poses a threat to its technical
feasibility. The simulator is uploaded at: https://gitlab.com/eputs/ev-fleet-sim-fcv-model
Relativistic effects and quasipotential equations
We compare the scattering amplitude resulting from the several quasipotential
equations for scalar particles. We consider the Blankenbecler-Sugar, Spectator,
Thompson, Erkelenz-Holinde and Equal-Time equations, which were solved
numerically without decomposition into partial waves. We analyze both
negative-energy state components of the propagators and retardation effects. We
found that the scattering solutions of the Spectator and the Equal-Time
equations are very close to the nonrelativistic solution even at high energies.
The overall relativistic effect increases with the energy. The width of the
band for the relative uncertainty in the real part of the scattering
matrix, due to different dynamical equations, is largest for
backward-scattering angles where it can be as large as 40%.Comment: Accepted for publication in Phys. Rev.
Preparation of hybrid organic-inorganic materials based on a di-ureasil matrix doped with lithium bis(trifluoromethanesulfonyl)imide
In this presentation we describe the preparation of solvent-free solid polymer electrolytes (SPEs) by the sol-gel route with the incorporation of controlled quantities of lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) into the host matrix. The host framework of these xerogels, designated as di-ureasils and represented by d-U(900), contains oxyethylene oligomers with about 15 repeat units bonded at each end to a siliceous backbone through urea bridging links. Electrolytes were characterized by ionic conductivity measurements, cyclic voltammetry at a gold microelectrode and thermal analysis. The results obtained reveal that these hybrid materials are completely amorphous and exhibit appropriate electrochemical characteristics for a variety of applications.Fundação para a Ciência e a Tecnologia - POCI/QUI/59856/2004; POCTI/3/686; SFRH/BD/22707/2005
Constraining Sources of Ultra High Energy Cosmic Rays Using High Energy Observations with the Fermi Satellite
We analyze the conditions that enable acceleration of particles to ultra-high
energies, ~10^{20} eV (UHECRs). We show that broad band photon data recently
provided by WMAP, ISOCAM, Swift and Fermi satellites, yield constraints on the
ability of active galactic nuclei (AGN) to produce UHECRs. The high energy (MeV
- GeV) photons are produced by Compton scattering of the emitted low energy
photons and the cosmic microwave background or extra-galactic background light.
The ratio of the luminosities at high and low photon energies can therefore be
used as a probe of the physical conditions in the acceleration site. We find
that existing data excludes core regions of nearby radio-loud AGN as possible
acceleration sites of UHECR protons. However, we show that giant radio lobes
are not excluded. We apply our method to Cen A, and show that acceleration of
protons to ~10^{20} eV can only occur at distances >~ 100 kpc from the core.Comment: Extended discussion on former results; Accepted for publication in
JCA
Low energy collective excitations in a superfluid trapped Fermi gas
We study low energy collective excitations in a trapped superfluid Fermi gas,
that describe slow variations of the phase of the superfluid order parameter.
Well below the critical temperature the corresponding eigenfrequencies turn out
to be of the order of the trap frequency, and these modes manifest themselves
as the eigenmodes of the density fluctuations of the gas sample. The latter
could provide an experimental evidence of the presence of the superfluid phase.Comment: 5 pages, REVTeX, referencies correcte
Flavor changing single top quark production channels at e^+e^- colliders in the effective Lagrangian description
We perform a global analysis of the sensitivity of LEP2 and e^+e^- colliders
with a c.m. energy in the range 500 - 2000 GeV to new flavor-changing single
top quark production in the effective Lagrangian approach. The processes
considered are sensitive to new flavor-changing effective vertices such as Ztc,
htc, four-Fermi tcee contact terms as well as a right-handed Wtb coupling. We
show that e^+ e^- colliders are most sensitive to the physics responsible for
the contact tcee vertices. For example, it is found that the recent data from
the 189 GeV LEP2 run can be used to rule out any new flavor physics that can
generate these four-Fermi operators up to energy scales of \Lambda > 0.7 - 1.4
TeV, depending on the type of the four-Fermi interaction. We also show that a
corresponding limit of \Lambda > 1.3 - 2.5 and \Lambda > 17 - 27 TeV can be
reached at the future 200 GeV LEP2 run and a 1000 GeV e^+e^- collider,
respectively. We note that these limits are much stronger than the typical
limits which can be placed on flavor diagonal four-Fermi couplings. Similar
results hold for \mu^+\mu^- colliders and for tu(bar) associated production.
Finally we briefly comment on the necessity of measuring all flavor-changing
effective vertices as they can be produced by different types of heavy physics.Comment: 34 pages, plain latex, 7 figures embadded in the text using epsfig.
Added new references and discussions regarding their relevance to the paper.
Added more comments on the comparison between flavor-changing and
flavor-diagonal contact terms and on the importance of measuring the Ztc
verte
Reinforcement determines the timing dependence of corticostriatal synaptic plasticity in vivo
Plasticity at synapses between the cortex and striatum is considered critical for learning novel actions. However, investigations of spike-timing-dependent plasticity (STDP) at these synapses have been performed largely in brain slice preparations, without consideration of physiological reinforcement signals. This has led to conflicting findings, and hampered the ability to relate neural plasticity to behavior. Using intracellular striatal recordings in intact rats, we show here that pairing presynaptic and postsynaptic activity induces robust Hebbian bidirectional plasticity, dependent on dopamine and adenosine signaling. Such plasticity, however, requires the arrival of a reward-conditioned sensory reinforcement signal within 2 s of the STDP pairing, thus revealing a timing-dependent eligibility trace on which reinforcement operates. These observations are validated with both computational modeling and behavioral testing. Our results indicate that Hebbian corticostriatal plasticity can be induced by classical reinforcement learning mechanisms, and might be central to the acquisition of novel actions
- …