4,838 research outputs found

    Apparent first-order wetting and anomalous scaling in the two-dimensional Ising model

    Get PDF
    The global phase diagram of wetting in the two-dimensional (2d) Ising model is obtained through exact calculation of the surface excess free energy. Besides a surface field for inducing wetting, a surface-coupling enhancement is included. The wetting transition is critical (second order) for any finite ratio of surface coupling J_s to bulk coupling J, and turns first order in the limit J_s/J to infinity. However, for J_s/J much larger than 1 the critical region is exponentially small and practically invisible to numerical studies. A distinct pre-asymptotic regime exists in which the transition displays first-order character. Surprisingly, in this regime the surface susceptibility and surface specific heat develop a divergence and show anomalous scaling with an exponent equal to 3/2.Comment: This new version presents the exact solution and its properties whereas the older version was based on an approximate numerical study of the mode

    External beam radiation therapy for locally advanced and metastatic gastrointestinal stromal tumors

    Get PDF
    BACKGROUND: The role of radiation therapy (RT) in the management of gastrointestinal stromal tumors (GIST) is not well described. Here we report our institutional experience for patients with locally advanced or metastatic GIST treated with RT. METHODS: Between 1997 and 2012, 15 patients with 22 GISTs were treated with RT at our center. The median age was 68 (range, 41–86). Fourteen patients had stage IV disease and 1 patient had stage IIIB disease, per the American Joint Committee on Cancer (AJCC), 7th Edition staging. Tumors were in a variety of locations, and were most commonly referred for palliative treatment. Eighteen of 22 tumors were symptomatic. Prior to RT, 14 of 15 patients received systemic therapy in the form of tyrosine kinase inhibitors (TKIs) (n = 11), chemotherapy (n = 4), or both (n = 1). TKIs were used concurrently for nine tumors (40.9%). No tumors were treated with concurrent chemotherapy. Several fractionation schemes were used, most commonly 3 Gy × 10 (n = 8). Local progression-free survival and overall survival were estimated using the Kaplan-Meier method. Acute toxicity was graded per Common Terminology Criteria for Adverse Events (CTCAE) v4.0. RESULTS: The median follow-up was 5.1 months (range, 1.3-28.3). At the time of analysis, 12 patients have died (80%). The estimated 6-month local progression-free survival and overall survival were 57.0% and 57.8%, respectively. Among the 18 symptomatic tumors, at least partial palliation was achieved in 17 (94.4%), and symptoms were completely palliated in eight (44.4%). Treatment was well tolerated, with no Grade 4 or 5 toxicities. There was no Grade ≥3 toxicity associated with concurrent TKI use. CONCLUSIONS: In this largest series to date of GISTs treated with RT, a high rate of palliation was achieved for symptomatic tumors in a cohort of advanced stage, heavily pretreated patients. Treatment was well tolerated, and concurrent use of tyrosine kinase inhibitor therapy was not associated with additional toxicity. While follow-up was short, durable control is possible for some patients, providing evidence that GIST is not universally radioresistant and that RT can provide an important benefit in patients with progressive or metastatic disease

    The Euler-Lagrange Cohomology and General Volume-Preserving Systems

    Full text link
    We briefly introduce the conception on Euler-Lagrange cohomology groups on a symplectic manifold (M2n,ω)(\mathcal{M}^{2n}, \omega) and systematically present the general form of volume-preserving equations on the manifold from the cohomological point of view. It is shown that for every volume-preserving flow generated by these equations there is an important 2-form that plays the analog role with the Hamiltonian in the Hamilton mechanics. In addition, the ordinary canonical equations with Hamiltonian HH are included as a special case with the 2-form 1n−1Hω\frac{1}{n-1} H \omega. It is studied the other volume preserving systems on (M2n,ω)({\cal M}^{2n}, \omega). It is also explored the relations between our approach and Feng-Shang's volume-preserving systems as well as the Nambu mechanics.Comment: Plain LaTeX, use packages amssymb and amscd, 15 pages, no figure

    Percolation and Conduction in Restricted Geometries

    Full text link
    The finite-size scaling behaviour for percolation and conduction is studied in two-dimensional triangular-shaped random resistor networks at the percolation threshold. The numerical simulations are performed using an efficient star-triangle algorithm. The percolation exponents, linked to the critical behaviour at corners, are in good agreement with the conformal results. The conductivity exponent, t', is found to be independent of the shape of the system. Its value is very close to recent estimates for the surface and bulk conductivity exponents.Comment: 10 pages, 7 figures, TeX, IOP macros include

    Corner Exponents in the Two-Dimensional Potts Model

    Full text link
    The critical behavior at a corner in two-dimensional Ising and three-state Potts models is studied numerically on the square lattice using transfer operator techniques. The local critical exponents for the magnetization and the energy density for various opening angles are deduced from finite-size scaling results at the critical point for isotropic or anisotropic couplings. The scaling dimensions compare quite well with the values expected from conformal invariance, provided the opening angle is replaced by an effective one in anisotropic systems.Comment: 11 pages, 2 eps-figures, uses LaTex and eps

    Predictive modeling of die filling of the pharmaceutical granules using the flexible neural tree

    Get PDF
    In this work, a computational intelligence (CI) technique named flexible neural tree (FNT) was developed to predict die filling performance of pharmaceutical granules and to identify significant die filling process variables. FNT resembles feedforward neural network, which creates a tree-like structure by using genetic programming. To improve accuracy, FNT parameters were optimized by using differential evolution algorithm. The performance of the FNT-based CI model was evaluated and compared with other CI techniques: multilayer perceptron, Gaussian process regression, and reduced error pruning tree. The accuracy of the CI model was evaluated experimentally using die filling as a case study. The die filling experiments were performed using a model shoe system and three different grades of microcrystalline cellulose (MCC) powders (MCC PH 101, MCC PH 102, and MCC DG). The feed powders were roll-compacted and milled into granules. The granules were then sieved into samples of various size classes. The mass of granules deposited into the die at different shoe speeds was measured. From these experiments, a dataset consisting true density, mean diameter (d50), granule size, and shoe speed as the inputs and the deposited mass as the output was generated. Cross-validation (CV) methods such as 10FCV and 5x2FCV were applied to develop and to validate the predictive models. It was found that the FNT-based CI model (for both CV methods) performed much better than other CI models. Additionally, it was observed that process variables such as the granule size and the shoe speed had a higher impact on the predictability than that of the powder property such as d50. Furthermore, validation of model prediction with experimental data showed that the die filling behavior of coarse granules could be better predicted than that of fine granules

    Possible solution of the Coriolis attenuation problem

    Get PDF
    The most consistently useful simple model for the study of odd deformed nuclei, the particle-rotor model (strong coupling limit of the core-particle coupling model) has nevertheless been beset by a long-standing problem: It is necessary in many cases to introduce an ad hoc parameter that reduces the size of the Coriolis interaction coupling the collective and single-particle motions. Of the numerous suggestions put forward for the origin of this supplementary interaction, none of those actually tested by calculations has been accepted as the solution of the problem. In this paper we seek a solution of the difficulty within the framework of a general formalism that starts from the spherical shell model and is capable of treating an arbitrary linear combination of multipole and pairing forces. With the restriction of the interaction to the familiar sum of a quadrupole multipole force and a monopole pairing force, we have previously studied a semi-microscopic version of the formalism whose framework is nevertheless more comprehensive than any previously applied to the problem. We obtained solutions for low-lying bands of several strongly deformed odd rare earth nuclei and found good agreement with experiment, except for an exaggerated staggering of levels for K=1/2 bands, which can be understood as a manifestation of the Coriolis attenuation problem. We argue that within the formalism utilized, the only way to improve the physics is to add interactions to the model Hamiltonian. We verify that by adding a magnetic dipole interaction of essentially fixed strength, we can fit the K=1/2 bands without destroying the agreement with other bands. In addition we show that our solution also fits 163Er, a classic test case of Coriolis attenuation that we had not previously studied.Comment: revtex, including 7 figures(postscript), submitted to Phys.Rev.

    Effect of stress-triaxiality on void growth in dynamic fracture of metals: a molecular dynamics study

    Full text link
    The effect of stress-triaxiality on growth of a void in a three dimensional single-crystal face-centered-cubic (FCC) lattice has been studied. Molecular dynamics (MD) simulations using an embedded-atom (EAM) potential for copper have been performed at room temperature and using strain controlling with high strain rates ranging from 10^7/sec to 10^10/sec. Strain-rates of these magnitudes can be studied experimentally, e.g. using shock waves induced by laser ablation. Void growth has been simulated in three different conditions, namely uniaxial, biaxial, and triaxial expansion. The response of the system in the three cases have been compared in terms of the void growth rate, the detailed void shape evolution, and the stress-strain behavior including the development of plastic strain. Also macroscopic observables as plastic work and porosity have been computed from the atomistic level. The stress thresholds for void growth are found to be comparable with spall strength values determined by dynamic fracture experiments. The conventional macroscopic assumption that the mean plastic strain results from the growth of the void is validated. The evolution of the system in the uniaxial case is found to exhibit four different regimes: elastic expansion; plastic yielding, when the mean stress is nearly constant, but the stress-triaxiality increases rapidly together with exponential growth of the void; saturation of the stress-triaxiality; and finally the failure.Comment: 35 figures, which are small (and blurry) due to the space limitations; submitted (with original figures) to Physical Review B. Final versio
    • …
    corecore