7 research outputs found

    Effect of antioxidant-rich propolis and bee pollen extracts against D-glucose induced Type 2 Diabetes in rats

    Get PDF
    The present study was designed to investigate the preventive effect of propolis, bee pollen and their combination on Type 2 diabetes induced by D-glucose in rats. The study was carried out by feeding daily two concentrations (100 and 200 mg/Kg BW) of propolis or bee pollen (or their combination to normal (non-diabetic) and diabetic rats for a period of 16 weeks. In vivo biochemical changes associated to diabetes are induced by drinking a solution containing 10% of D-glucose (diabetic rats). The in vitro antioxidant activity was also evaluated and the chemical composition of propolis and bee pollen extracts was determined by UHPLC-DAD. Phytochemical composition of propolis and bee pollen revealed the presence of several natural antioxidants, such as hydroxycinnamic acids, hydroxybenzoic acids, flavonoids, flavan-3-ols and stilbens. The major antioxidant compound present in propolis was Naringin (290.19±0.2 mg/Kg) and in bee pollen was apigenin (162.85±17.7 mg/Kg). These results have been related with a high antioxidant activity, more intense in propolis extract. In rats, the administration of D-glucose had induced hyperglycemia (13.2 ± 0.82 mmol/L), increased plasmatic insulin levels (25.10 ± 2.12 U/L) and HOMA-IR index (14.72 ± 0.85) accompanied with dyslipidemia, elevation of hepatic enzyme levels, and a change in both serum renal biomarkers and plasmatic calcium. The co-administration of propolis and bee pollen extracts alone or in combination restored these biochemical parameters and attenuated the deleterious effects of D-glucose on liver and kidney functions. Furthermore, these effects were better attenuated in the combined therapy-prevented diabetic rats. Hence, it is possible to conclude that propolis and bee pollen can be used as a preventive natural product against diabetes induced dyslipidemia and hepato-renal damage.This work was supported by a grant from Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ). This research was funded by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UIDB/04469/2020 unit and Bio Tec Norteoperation (NORTE-01-0145-FEDER000004) funded by the European Regional Development Fund (FEDER) under the scope of Norte2020-Programa Operacional Regional do Norte. Zlatina Genisheva is supported by the project OH2O (POCI-01-0145-FEDER-029145) funded by FCT and FEDER under the scope of Programa Operacional de Competividade e Internacionalizaçao (POCI)-COMPETE 2020 and PORTUGAL2020. Pedro Santos is recipient of a fellowship supported by a doctoral advanced training (call NORTE-69-2015-15), funded by the European Social Fund under the scope of Norte2020 (NORTE-08-5369-FSE-000036).info:eu-repo/semantics/publishedVersio

    Protective effect of honey and propolis against gentamicin-induced oxidative stress and hepatorenal damages

    Get PDF
    Bee products are a promising source of phenolic compounds with strong antioxidant activity. The present study was designed to explore the protective effect of honey, propolis, and their combination on gentamicin-induced oxidative stress and hepatorenal dysfunction. This study was conducted on male Wistar rats by intraperitoneal injections of gentamicin (120mg/kg BW/day, i.p.) or normal saline (1ml/kg BW/day, i.p.) for 10 consecutive days. Honey (2g/kg BW), propolis (100mg/kg BW), or their combination were given daily by gavage to normal and gentamicin groups. Honey and propolis samples were evaluated for their phytochemical composition and antioxidant capacity. The in vitro investigations showed that the evaluated samples especially propolis extract have high antioxidant power associated with the presence of several phenolic compounds such as flavonoids, flavan-3-ols, hydroxybenzoic acids, hydroxycinnamic acids, and stilbenes, while honey contains only hydroxybenzoic acids and hydroxycinnamic acids. It was also shown that simultaneous treatment with honey or propolis extract alone or in association prevented changes caused by gentamicin administration and improved hepatic and renal functions. Changes caused by gentamicin administration, observed by in vivo experiments, include significant elevation of uric acid, urea, creatinine, and hepatic enzyme levels (ALT, AST, and ALP) and kidney biochemical changes (an increase of urea, uric acid, and creatinine and a decrease of albumin and total protein) as well as remarkable changes of renal and liver oxidative stress markers (CAT, GPx, and GSH) and elevation of MDA levels. Overall, it can be concluded that honey and propolis might be useful in the management of liver and renal diseases induced by xenobiotics.This work was supported by a grant from the University Sidi Mohamed Ben Abdallah for Laboratory Physiology-Pharmacology & Environmental Health. This research was also funded by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UIDB/04469/2020 unit. Zlatina Genisheva is supported by the project OH2O (POCI-01-0145-FEDER-029145) funded by FCT and FEDER under the scope of Programa Operacional de Competividade e Internacionalizaçao (POCI)-COMPETE 2020 and PORTUGAL2020.info:eu-repo/semantics/publishedVersio

    Protective effect of honey and propolis against gentamicin- induced oxidative stress and hepatorenal damages

    Get PDF
    Bee products are a promising source of phenolic compounds with strong antioxidant activity. The present study was designed to explore the protective effect of honey, propolis, and their combination on gentamicin-induced oxidative stress and hepatorenal dysfunction. This study was conducted on male Wistar rats by intraperitoneal injections of gentamicin (120 mg/kg BW/day, i.p.) or normal saline (1 ml/kg BW/day, i.p.) for 10 consecutive days. Honey (2 g/kg BW), propolis (100 mg/kg BW), or their combination were given daily by gavage to normal and gentamicin groups. Honey and propolis samples were evaluated for their phytochemical composition and antioxidant capacity. The in vitro investigations showed that the evaluated samples especially propolis extract have high antioxidant power associated with the presence of several phenolic compounds such as flavonoids, flavan-3-ols, hydroxybenzoic acids, hydroxycinnamic acids, and stilbenes, while honey contains only hydroxybenzoic acids and hydroxycinnamic acids. It was also shown that simultaneous treatment with honey or propolis extract alone or in association prevented changes caused by gentamicin administration and improved hepatic and renal functions. Changes caused by gentamicin administration, observed by in vivo experiments, include significant elevation of uric acid, urea, creatinine, and hepatic enzyme levels (ALT, AST, and ALP) and kidney biochemical changes (an increase of urea, uric acid, and creatinine and a decrease of albumin and total protein) as well as remarkable changes of renal and liver oxidative stress markers (CAT, GPx, and GSH) and elevation of MDA levels. Overall, it can be concluded that honey and propolis might be useful in the management of liver and renal diseases induced by xenobiotics.info:eu-repo/semantics/publishedVersio

    Simultaneous Optimization of Extraction Yield, Phenolic Compounds and Antioxidant Activity of Moroccan Propolis Extracts: Improvement of Ultrasound-Assisted Technique Using Response Surface Methodology

    No full text
    Propolis has given rise to refreshing interest in recent years in the field of conventional medicine. Its extraction represents an important process that requires optimal conditions, which strongly affect the yield of extraction, total polyphenols, flavonoid content, and radical scavenging capacity markers. The objective of the present study was to optimize the ultrasound-assisted extraction conditions of Moroccan propolis. The studied responses were the extraction yield, total polyphenols, flavonoid contents (TPC, TFC), and antioxidant activity of the extract evaluated by DPPH-IC50 and FRAP-EC50 assays. The response surface methodology (RSM) and specifically the Box–Behnken design (BBD) were used, taking into account three variables: sonication time (min), solvent/propolis ratio (mL/g), and ethanol concentration (%). After the realization of experiments and data analysis, optimal response values were 15.39%, 192 mg GAE/g of propolis,45.15 mg QEq/g, 29.8 µg/mL, and 128.3 µmol Fe2+/g for extraction yield, TPC, TFC, DPPH-IC50, and FRAP-EC50, respectively. Besides, optimal ultrasound extraction conditions were 15 min for sonication time, 30 mL/g for solvent/propolis ratio, and 40% for ethanol concentration. All obtained experimental values were in good agreement with the predicted values, suggesting that using an experimental design in the ultrasound-assisted extraction process and optimization was prudently chosen

    Chemical composition and antioxidant content of Thymus vulgaris honey and Origanum vulgare essential oil; their effect on carbon tetrachloride-induced toxicity

    Get PDF
    Aim: The study investigated the chemical composition, antioxidant content, and antioxidant activity of Thymus vulgaris honey (TVH) and Origanum vulgare essential oil (OVEO) and their mixture effect on carbon tetrachloride (CCl4)-induced toxicity. Materials and Methods: The study conducted physicochemical characterization and chemical analysis of TVH and OVEO with the use of gas chromatography–mass spectrometry and high-performance liquid chromatograph (HPLC). The antioxidant activity of TVH and OVEO was done with the use of 1,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. The study used nine groups of rats to investigate the effect of TVH, OVEO, and a mixture of TVH and OVEO (HEM) on CCl4-induced toxicity. Intraperitoneal injection of CCl4 (1 mL/100 g) was used to induce toxicity. The doses of TVH and OVEO were 1 mg/kg.b.wt, and 50 mg/kg.b.wt, respectively. HEM contains TVH (1 mg/kg.b.wt) and OVEO (50 mg/kg.b.wt). Results: TVH has a high content of phenols, flavonoids, and flavanols. HPLC analysis showed that TVH contains, for the 1st time, epicatechin gallate, and at a high concentration. OVEO includes a high percentage of carvacrol and thymol. With the use of DPPH, OVEO was more potent than TVH. CCl4 caused significant liver and kidney damage and lipid disorders, which were alleviated by HVT, OVEO, and HEM. HVT was more potent than OVEO (p<0.05), and HEM was more potent than HVT and OVEO (p<0.05). Conclusion: The study identified high content of epicatechin gallate for the 1st time in TVH, and OVEO contains a high percentage of thymol and carvacrol. Epicatechin gallate might be useful as a marker for TVH. Mixing OVEO and TVH significantly potentiated their protection against CCl4-induced liver and kidney toxicity

    The Antioxidant Content and Protective Effect of Argan Oil and Syzygium aromaticum Essential Oil in Hydrogen Peroxide-Induced Biochemical and Histological Changes

    No full text
    Oxidative stress is an important etiology of chronic diseases and many studies have shown that natural products might alleviate oxidative stress-induced pathogenesis. The study aims to evaluate the effect of Argan oil and Syzygium aromaticum essential oil on hydrogen peroxide (H2O2)-induced liver, brain and kidney tissue toxicity as well as biochemical changes in wistar rats. The antioxidant content of Argan oil and Syzygium aromaticum essential oil was studied with the use of gas chromatography. The animals received daily by gavage, for 21 days, either distilled water, Syzygium aromaticum essential oil, Argan oil, H2O2 alone, H2O2 and Syzygium aromaticum essential oil, or H2O2 and Argan oil. Blood samples were withdrawn on day 21 for the biochemical blood tests, and the kidney, liver and brain tissue samples were prepared for histopathology examination. The results showed that the content of antioxidant compounds in Syzygium aromaticum essential oil is higher than that found in Argan oil. H2O2 increased level of blood urea, liver enzymes, total cholesterol, Low Density Lipoprotein (LDL-C), Triglycerides (TG) and Very Low Density Lipoprotein (VLDL), and decreased the total protein, albumin and High Density Lipoprotein-cholesterol (HDL-C). There was no significant effect on blood electrolyte or serum creatinine. The histopathology examination demonstrated that H2O2 induces dilatation in the central vein, inflammation and binucleation in the liver, congestion and hemorrhage in the brain, and congestion in the kidney. The H2O2-induced histopathological and biochemical changes have been significantly alleviated by Syzygium aromaticum essential oil or Argan oil. It is concluded that the Argan oil and especially the mixture of Argan oil with Syzygium aromaticum essential oil can reduce the oxidative damage caused by H2O2, and this will pave the way to investigate the protective effects of these natural substances in the diseases attributed to the high oxidative stress
    corecore