13 research outputs found

    Discerning natural and anthropogenic organic matter inputs to salt marsh sediments of Ria Formosa lagoon (South Portugal)

    Get PDF
    Sedimentary organic matter (OM) origin and molecular composition provide useful information to understand carbon cycling in coastal wetlands. Core sediments from threors' Contributionse transects along Ria Formosa lagoon intertidal zone were analysed using analytical pyrolysis (Py-GC/MS) to determine composition, distribution and origin of sedimentary OM. The distribution of alkyl compounds (alkanes, alkanoic acids and alkan-2-ones), polycyclic aromatic hydrocarbons (PAHs), lignin-derived methoxyphenols, linear alkylbenzenes (LABs), steranes and hopanes indicated OM inputs to the intertidal environment from natural-autochthonous and allochthonous-as well as anthropogenic. Several n-alkane geochemical indices used to assess the distribution of main OM sources (terrestrial and marine) in the sediments indicate that algal and aquatic macrophyte derived OM inputs dominated over terrigenous plant sources. The lignin-derived methoxyphenol assemblage, dominated by vinylguaiacol and vinylsyringol derivatives in all sediments, points to large OM contribution from higher plants. The spatial distributions of PAHs (polyaromatic hydrocarbons) showed that most pollution sources were mixed sources including both pyrogenic and petrogenic. Low carbon preference indexes (CPI > 1) for n-alkanes, the presence of UCM (unresolved complex mixture) and the distribution of hopanes (C-29-C-36) and steranes (C-27-C-29) suggested localized petroleum-derived hydrocarbon inputs to the core sediments. Series of LABs were found in most sediment samples also pointing to domestic sewage anthropogenic contributions to the sediment OM.EU Erasmus Mundus Joint Doctorate fellowship (FUECA, University of Cadiz, Spain)EUEuropean Commission [FP7-ENV-2011, 282845, FP7-534 ENV-2012, 308392]MINECO project INTERCARBON [CGL2016-78937-R]info:eu-repo/semantics/publishedVersio

    The Natural environment and the biogeochemical cycles

    No full text
    430p. : ill. ; 25 cm

    Field Validation of Polyethylene Passive Air Samplers for Parent and Alkylated PAHs in Alexandria, Egypt

    No full text
    Polyethylene samplers (PEs) were deployed at 11 locations in Alexandria, Egypt during summer and winter to test and characterize them as passive samplers for concentrations, sources, and seasonal variations of atmospheric concentrations of polycyclic aromatic hydrocarbons (PAHs). PE-air equilibrium was attained faster for a wider range of PAHs during the winter season possibly due to increased wind speeds. Calculated PE-air partitioning constants, K PE-A, in our study [Log KPE-A = 0.9426 × Log K OA - 0.022 (n = 12, R2 = 0.99, Std error = 0.053)] agreed with literature values within \u3c46%. For parent (except naphthalene), mono- and dialkylated PAHs, active sampling based concentrations of PAHs were within an average factor of 1.4 (1.0-5.6) compared to the PE based values. For C 3-4 alkylated PAHs, KPE-A values were lower than predicted, on average by ∌0.8 log units per carbon in the alkylation. Enthalpies of vaporization (ÎŽHvap) accurately corrected K PE-As for temperature differences between winter and summer sampling. PAH profiles were dominated by naphthalene, phenanthrene, and alkylated phenanthrenes. Calculated diagnostic ratios indicated that PAHs originated mainly from vehicle emissions. © 2012 American Chemical Society

    Surfactants

    No full text
    corecore