6 research outputs found
Performance of Anti-Lock Braking Systems Based on Adaptive and Intelligent Control Methodologies
Automobiles of today must constantly change their speeds in reaction to changing road and traffic circumstances as the pace and density of road traffic increases. In sophisticated automobiles, the Anti-lock Braking System (ABS) is a vehicle safety system that enhances the vehicle's stability and steering capabilities by varying the torque to maintain the slip ratio at a safe level. This paper analyzes the performance of classical control, model reference adaptive control (MRAC), and intelligent control for controlling the (ABS). The ABS controller's goal is to keep the wheel slip ratio, which includes nonlinearities, parametric uncertainties, and disturbances as close to an optimal slip value as possible. This will decrease the stopping distance and guarantee safe vehicle operation during braking. A Bang-bang controller, PID, PID based Model Reference Adaptive Control (PID-MRAD), Fuzzy Logic Control (FLC), and Adaptive Neuro-Fuzzy Inference System (ANFIS) controller are used to control the vehicle model. The car was tested on a dry asphalt and ice road with only straight-line braking. Based on slip ratio, vehicle speed, angular velocity, and stopping time, comparisons are performed between all control strategies. To analyze braking characteristics, the simulation changes the road surface condition, vehicle weight, and control methods. The simulation results revealed that our objectives were met. The simulation results clearly show that the ANFIS provides more flexibility and improves system-tracking precision in control action compared to the Bang-bang, PID, PID-MRAC, and FLC
Implementing PID Control on Arduino Uno for Air Temperature Optimization
This research investigates the precise regulation of liquid filling in tanks, specifically focusing on water storage systems. It employs the Proportional-Integral-Derivative (PID) control method in conjunction with an HC-SR04 ultrasonic sensor and an Arduino Uno microcontroller. Given the paramount importance of water as a resource, accurate management of its storage is of utmost significance. The PID control method, known for its rapid responsiveness, minimal overshoot, and robust stability, effectively facilitates this task. Integrating the ultrasonic sensor and microcontroller further augments the precision of water level regulation. The article expounds upon the foundational principles of the PID control method and elucidates its application in the context of liquid tank filling. It offers a comprehensive insight into the hardware configuration, encompassing pivotal components such as the Arduino Uno microcontroller, HC-SR04 ultrasonic sensor, and the L298 driver responsible for water pump control. The experimental approach is meticulous, presenting results from tests involving the Proportional Controller, Proportional Integral (PI) Controller, and Proportional Integral Derivative (PID) Controller. These tests rigorously analyze the impact of varying Proportional Gain (Kp), Integral Gain (Ki), and Derivative Gain (Kd) parameters on crucial performance metrics such as response time, overshoot, and steady-state error. The findings underscore the critical importance of an optimal parameter configuration, emphasizing the delicate equilibrium between response speed, precision, and error minimization. This research significantly advances PID control implementation in liquid tank filling, offering insights that pave the way for developing more efficient liquid management systems across various sectors. The identified optimal parameter configuration is Kp = 5.0, Ki = 0.3, and Kd = 0.2
Design and Implementation of a Traffic Control System Based on Congestion
Abstract: The traffic issues have garnered more and more attention on a global scale as the number of cars has grown. One of the biggest problems is the traffic congestion, also the fixed-time settings are still used by the majority of traffic systems today. These technologies are unable to dynamically alter the timing of traffic lights in response to heavy traffic. Thanks to technological advancements, sensors or cameras can now collect data on traffic volume and wait times. This study provided an illustration of a traffic light control system that can manage traffic according to the number of vehicles in each road. Additionally, it showed how the system was designed using the Proteus design suite software and how a prototype of the system was implemented using an Arduino Mega 2560 and an infrared sensor. Through the results obtained, the efficiency of the proposed system is clear by comparing it with the system that depends on the fixed time of traffic signals
Enhancing Speed Estimation in DC Motors using the Kalman Filter Method: A Comprehensive Analysis
The accurate estimation of speed is crucial for optimizing the performance and efficiency of DC motors, which find extensive applications in various domains. However, the presence of noise ripple, caused by interactions with magnetic or electromagnetic fields, poses challenges to speed estimation accuracy. In this article, we propose the implementation of the Kalman Filter method as a promising solution to address these challenges. The Kalman Filter is a recursive mathematical algorithm that combines measurements from multiple sources to estimate system states with improved accuracy. By employing the Kalman Filter, it becomes possible to estimate the true speed of DC motors while effectively reducing the adverse effects of noise ripple. This research focuses on determining the optimal values for the Kalman Filter parameters and conducting experiments on a DC motor to evaluate the performance of the proposed approach. The experimental results demonstrate that the Kalman Filter significantly improves the control of speed oscillations and enhances the stability of the DC motor system. Furthermore, a comprehensive analysis of the system's response and parameter tuning reveals the impact of different parameter combinations on settling time, overshoot, and rise time. By carefully selecting appropriate parameters, the proposed approach contributes to accurate speed estimation and effective control of DC motors, advancing the understanding and application of the Kalman Filter in various relevant fields. Overall, this research provides valuable insights into enhancing the performance and efficiency of DC motors through the integration of the Kalman Filter method
Enhancing Speed Estimation in DC Motors using the Kalman Filter Method: A Comprehensive Analysis
The accurate estimation of speed is crucial for optimizing the performance and efficiency of DC motors, which find extensive applications in various domains. However, the presence of noise ripple, caused by interactions with magnetic or electromagnetic fields, poses challenges to speed estimation accuracy. In this article, we propose the implementation of the Kalman Filter method as a promising solution to address these challenges. The Kalman Filter is a recursive mathematical algorithm that combines measurements from multiple sources to estimate system states with improved accuracy. By employing the Kalman Filter, it becomes possible to estimate the true speed of DC motors while effectively reducing the adverse effects of noise ripple. This research focuses on determining the optimal values for the Kalman Filter parameters and conducting experiments on a DC motor to evaluate the performance of the proposed approach. The experimental results demonstrate that the Kalman Filter significantly improves the control of speed oscillations and enhances the stability of the DC motor system. Furthermore, a comprehensive analysis of the system's response and parameter tuning reveals the impact of different parameter combinations on settling time, overshoot, and rise time. By carefully selecting appropriate parameters, the proposed approach contributes to accurate speed estimation and effective control of DC motors, advancing the understanding and application of the Kalman Filter in various relevant fields. Overall, this research provides valuable insights into enhancing the performance and efficiency of DC motors through the integration of the Kalman Filter method