5 research outputs found

    Growth, carcass traits, immunity and oxidative status of broilers exposed to continuous or intermittent lighting programs

    No full text
    Objective: An experiment was conducted to investigate the continuous and intermittent lighting program effects on terms of the productive performance, carcass traits, blood biochemical parameters, innate immune and oxidative status in broiler chicks. Methods: A total of 600 Cobb-500 one day old chicks were randomly allocated into six equal groups (100 chicks per treated group with five replicates of 20 chicks each) based on lighting program; 22 continuous lighting (22 C), 11 h lighting+1 darkness twice daily (11 L/1 D), 20 h continuous lighting (20 C), 5 h lighting+1 darkness four times daily (5 L/1 D), 18 h continuous lighting (18 C) and the final group subjected for 3 h lighting+1 h darkness six times daily (3 L/1 D). The experimental period lasted 42 days. Results: Compared with those under the intermittent light program, broiler chicks exposed to continuous lighting for 22 h had significant improvement in live body weight and carcass (dressing and breast percentage) measured traits. Though reducing lighting hours significantly reduced feed intake and feed conversion ratio values. Different lighting programs revealed no significant effect on all blood biochemical parameters. Oxidative stress and innate immunity parameters significantly enhance by reducing lighting hours (3L/1D). Conclusion: The findings suggest that reducing lighting hours up to 3L/1D would be more useful in enhancing feed efficiency, innate immunity, and oxidative status compared with continuous lighting programs on broilers

    Managing Gut Microbiota through In Ovo Nutrition Influences Early-Life Programming in Broiler Chickens

    No full text
    The chicken gut is the habitat to trillions of microorganisms that affect physiological functions and immune status through metabolic activities and host interaction. Gut microbiota research previously focused on inflammation; however, it is now clear that these microbial communities play an essential role in maintaining normal homeostatic conditions by regulating the immune system. In addition, the microbiota helps reduce and prevent pathogen colonization of the gut via the mechanism of competitive exclusion and the synthesis of bactericidal molecules. Under commercial conditions, newly hatched chicks have access to feed after 36–72 h of hatching due to the hatch window and routine hatchery practices. This delay adversely affects the potential inoculation of the healthy microbiota and impairs the development and maturation of muscle, the immune system, and the gastrointestinal tract (GIT). Modulating the gut microbiota has been proposed as a potential strategy for improving host health and productivity and avoiding undesirable effects on gut health and the immune system. Using early-life programming via in ovo stimulation with probiotics and prebiotics, it may be possible to avoid selected metabolic disorders, poor immunity, and pathogen resistance, which the broiler industry now faces due to commercial hatching and selection pressures imposed by an increasingly demanding market

    ESICM LIVES 2016: part two : Milan, Italy. 1-5 October 2016.

    Get PDF
    Meeting abstrac
    corecore