28 research outputs found

    Developing repair materials for stress urinary incontinence to withstand dynamic distension

    Get PDF
    Polypropylene mesh used as a mid-urethral sling is associated with severe clinical complications in a significant minority of patients. Current in vitro mechanical testing shows that polypropylene responds inadequately to mechanical distension and is also poor at supporting cell proliferation.Our objective therefore is to produce materials with more appropriate mechanical properties for use as a sling material but which can also support cell integration.Scaffolds of two polyurethanes (PU), poly-L-lactic acid (PLA) and co-polymers of the two were produced by electrospinning. Mechanical properties of materials were assessed and compared to polypropylene. The interaction of adipose derived stem cells (ADSC) with the scaffolds was also assessed. Uniaxial tensiometry of scaffolds was performed before and after seven days of cyclical distension. Cell penetration (using DAPI and a fluorescent red cell tracker dye), viability (AlamarBlue assay) and total collagen production (Sirius red assay) were measured for ADSC cultured on scaffolds.Polypropylene was stronger than polyurethanes and PLA. However, polypropylene mesh deformed plastically after 7 days of sustained cyclical distention, while polyurethanes maintained their elasticity. Scaffolds of PU containing PLA were weaker and stiffer than PU or polypropylene but were significantly better than PU scaffolds alone at supporting ADSC.Therefore, prolonged mechanical distension in vitro causes polypropylene to fail. Materials with more appropriate mechanical properties for use as sling materials can be produced using PU. Combining PLA with PU greatly improves interaction of cells with this material

    Production and implantation of renal extracellular matrix scaffolds from porcine kidneys as a platform for renal bioengineering investigations.

    No full text
    BACKGROUND: It is important to identify new sources of transplantable organs because of the critical shortage of donor organs. Tissue engineering holds the potential to address this issue through the implementation of decellularization-recellularization technology. OBJECTIVE: To produce and examine acellular renal extracellular matrix (ECM) scaffolds as a platform for kidney bioengineering. METHODS: Porcine kidneys were decellularized with distilled water and sodium dodecyl sulfate-based solution. After rinsing with buffer solution to remove the sodium dodecyl sulfate, the so-obtained renal ECM scaffolds were processed for vascular imaging, histology, and cell seeding to investigate the vascular patency, degree of decellularization, and scaffold biocompatibility in vitro. Four whole renal scaffolds were implanted in pigs to assess whether these constructs would sustain normal blood pressure and to determine their biocompatibility in vivo. Pigs were sacrificed after 2 weeks and the explanted scaffolds were processed for histology. RESULTS: Renal ECM scaffolds were successfully produced from porcine kidneys. Scaffolds retained their essential ECM architecture and an intact vascular tree and allowed cell growth. On implantation, unseeded scaffolds were easily reperfused, sustained blood pressure, and were tolerated throughout the study period. No blood extravasation occurred. Pathology of explanted scaffolds showed maintenance of renal ultrastructure. Presence of inflammatory cells in the pericapsular region and complete thrombosis of the vascular tree were evident. CONCLUSIONS: Our investigations show that pig kidneys can be successfully decellularized to produce renal ECM scaffolds. These scaffolds maintain their basic components, are biocompatible, and show intact, though thrombosed, vasculature

    Cell biology and physiology of the uroepithelium

    No full text
    The uroepithelium sits at the interface between the urinary space and underlying tissues, where it forms a high-resistance barrier to ion, solute, and water flux, as well as pathogens. However, the uroepithelium is not simply a passive barrier; it can modulate the composition of the urine, and it functions as an integral part of a sensory web in which it receives, amplifies, and transmits information about its external milieu to the underlying nervous and muscular systems. This review examines our understanding of uroepithelial regeneration and how specializations of the outermost umbrella cell layer, including tight junctions, surface uroplakins, and dynamic apical membrane exocytosis/endocytosis, contribute to barrier function and how they are co-opted by uropathogenic bacteria to infect the uroepithelium. Furthermore, we discuss the presence and possible functions of aquaporins, urea transporters, and multiple ion channels in the uroepithelium. Finally, we describe potential mechanisms by which the uroepithelium can transmit information about the urinary space to the other tissues in the bladder proper
    corecore