120 research outputs found

    Curvaton and the inhomogeneous end of inflation

    Get PDF
    We study the primordial density perturbations and non-Gaussianities generated from the combined effects of an inhomogeneous end of inflation and curvaton decay in hybrid inflation. This dual role is played by a single isocurvature field which is massless during inflation but acquire a mass at the end of inflation via the waterfall phase transition. We calculate the resulting primordial non-Gaussianity characterized by the non-linearity parameter, fNLf_{NL}, recovering the usual end-of-inflation result when the field decays promptly and the usual curvaton result if the field decays sufficiently late.Comment: 13 pages, 5 figure

    Contribution of the hybrid inflation waterfall to the primordial curvature perturbation

    Full text link
    A contribution ζχ\zeta_\chi to the curvature perturbation will be generated during the waterfall that ends hybrid inflation, that may be significant on small scales. In particular, it may lead to excessive black hole formation. We here consider standard hybrid inflation, where the tachyonic mass of the waterfall field is much bigger than the Hubble parameter. We calculate ζχ\zeta_\chi in the simplest case, and see why earlier calculations of ζχ\zeta_\chi are incorrect.Comment: Simpler and more complete results, especiallly for delta N approac

    Co-expression of Cancer Stem Cell Markers OCT4 and NANOG Predicts Poor Prognosis in Renal Cell Carcinomas

    Get PDF
    Many renal cancer patients experience disease recurrence after combined treatments or immunotherapy due to permanence of cancer stem cells (CSCs). This study was conducted to evaluate the expression patterns and clinical significance of octamer-binding transcription factor 4 (OCT4) and NANOG as the key stem cell factors in renal cell carcinoma (RCC). A total of 186 RCC tissues were immunostained on a tissue microarray (TMA) for the putative CSC markers OCT4 and NANOG. Subsequently, the correlation among the expression of these markers, the clinicopathological variables and survival outcomes were determined. OCT4 and NANOG were expressed in both the nucleus and the cytoplasm of RCC cells. Coexpression of OCT4 and NANOG in renal cancer was significantly associated with RCC subtypes. A significant association was found among nuclear coexpression of OCT4 and NANOG, worse PFS in RCC, and the clear cell renal cell carcinomas (ccRCC) subtype. The OCT4-nuclear high/NANOG-nuclear high phenotype in RCC and ccRCC subtype indicated aggressive tumor behavior and predicted a worse clinical outcome, which may be a useful biomarker to identify patients at high risk of postoperative recurrence and metastasis. Cytoplasmic expression of NANOG could be considered as a novel independent prognostic predictor in patients with renal cancer. © 2018, The Author(s)

    Explicit solution for a Gaussian wave packet impinging on a square barrier

    Get PDF
    The collision of a quantum Gaussian wave packet with a square barrier is solved explicitly in terms of known functions. The obtained formula is suitable for performing fast calculations or asymptotic analysis. It also provides physical insight since the description of different regimes and collision phenomena typically requires only some of the terms.Comment: To be published in J. Phys.

    Mutation Symmetries in BPS Quiver Theories: Building the BPS Spectra

    Full text link
    We study the basic features of BPS quiver mutations in 4D N=2\mathcal{N}=2 supersymmetric quantum field theory with G=ADEG=ADE gauge symmetries.\ We show, for these gauge symmetries, that there is an isotropy group GMutG\mathcal{G}_{Mut}^{G} associated to a set of quiver mutations capturing information about the BPS spectra. In the strong coupling limit, it is shown that BPS chambers correspond to finite and closed groupoid orbits with an isotropy symmetry group GstrongG\mathcal{G}_{strong}^{G} isomorphic to the discrete dihedral groups Dih2hGDih_{2h_{G}} contained in Coxeter(G)(G) with % h_{G} the Coxeter number of G. These isotropy symmetries allow to determine the BPS spectrum of the strong coupling chamber; and give another way to count the total number of BPS and anti-BPS states of N=2\mathcal{N}=2 gauge theories. We also build the matrix realization of these mutation groups GstrongG% \mathcal{G}_{strong}^{G} from which we read directly the electric-magnetic charges of the BPS and anti-BPS states of N=2\mathcal{N}=2 QFT4_{4} as well as their matrix intersections. We study as well the quiver mutation symmetries in the weak coupling limit and give their links with infinite Coxeter groups. We show amongst others that Gweaksu2\mathcal{G}_{weak}^{su_{2}} is contained in GL(2,Z){GL}({2,}\mathbb{Z}) ; and isomorphic to the infinite Coxeter I2{I_{2}^{\infty}}. Other issues such as building G\mathcal{G}%_{weak}^{so_{4}} and Gweaksu3\mathcal{G}_{weak}^{su_{3}} are also studied.Comment: LaTeX, 98 pages, 18 figures, Appendix I on groupoids adde

    SMAD4 Expression in Renal Cell Carcinomas Correlates With a Stem-Cell Phenotype and Poor Clinical Outcomes

    Get PDF
    Renal cell carcinoma (RCC) is the most lethal neoplasm of common urologic cancers with poor prognoses. SMAD4 has a principal role in TGF-β (Transformis growth factorβ)-induced epithelial to mesenchymal transition (EMT) as a key factor in gaining cancer stem cell (CSC) features and tumor aggressiveness. This study aimed to evaluate the expression patterns and clinical significance of SMAD4 in RCC and the impact of its targeting on stem cell/mesenchymal cells and EMT characteristics in renal spheroid derived cells (SDCs) compared to parental cells (PCs) in RCC. The expression pattern and clinical significance of SMAD4 was evaluated in RCC. SDCs were enriched using a sphere culture system. Then SDCs and their PCs were compared with respect to their sphere and colony formation, expression of putative CSC markers, invasiveness as well as expression of genes, including stemness/mesenchymal, SMAD4 and TGFβ1genes. Finally, the effect of SMAD4 knockdown on SDCs was analyzed. We demonstrated that SMAD4 is positively correlated with decreased disease specific survival (DSS) in RCC patients and clear cell RCC (ccRCC) subtype and associates with poor DSS in patients with RCC, especially in ccRCC as the most metastatic RCC subtype. SDCs exhibited higher stem cell/mesenchymal properties. Inhibition of SMAD4 in PCs accelerated the dissociation of SDCs and decreased their clonogenicity, invasiveness, expression of mesenchymal markers and expression of SMAD4 and TGFβ1 genes compared to SDCs before transfection. We suggest that targeting SMAD4 may be useful against renal CSCs and may improve RCC prognosis. © Copyright © 2021 Rasti, Madjd, Saeednejad Zanjani, Babashah, Abolhasani, Asgari and Mehrazma

    Human telomerase reverse transcriptase protein expression predicts tumour aggressiveness and survival in patients with clear cell renal cell carcinoma

    Get PDF
    Human telomerase reverse transcriptase (hTERT) is an active component of telomerase and responsible for its catalytic activity, associated with cell proliferation and differentiation. For the first time, the present study was conducted to evaluate the expression and prognostic significance of hTERT in different histological subtypes of renal cell carcinoma (RCC). Expression of hTERT was examined in 176 well-defined renal tumour samples including clear cell RCCs (ccRCCs), papillary and chromophobe RCCs using immunohistochemistry on tissue microarrays. The association between hTERT expression and clinicopathological parameters as well as survival outcomes were then analysed. There was a statistically significant difference in terms of hTERT expression among various RCC subtypes. In ccRCC, increased expression of hTERT was significantly associated with advanced stage, higher grade, presence of microvascular invasion, lymph node invasion, and metastasis. Moreover, in the multivariate analysis, tumour stage and tumour size were independent predictors of the disease-specific survival (DSS). Additionally, expression of hTERT was found to be a significant predictor of worse DSS (p = 0.012) in the univariate analysis. In papillary carcinoma samples (type I and II), significant association was detected between hTERT expression and the tumour stage (p = 0.010, p = 0.050), respectively. In chromophobe RCC, no significant association was detected between expression of hTERT and clinicopathological parameters and survival data. We showed that hTERT protein expression was associated with more aggressive tumour behaviour and more advanced disease in ccRCC patients. Also, hTERT may be a novel poor prognostic indicator of DSS, if the patients are followed for more prolonged time periods. © 2018 Royal College of Pathologists of Australasi

    The hybrid inflation waterfall and the primordial curvature perturbation

    Full text link
    Without demanding a specific form for the inflaton potential, we obtain an estimate of the contribution to the curvature perturbation generated during the linear era of the hybrid inflation waterfall. The spectrum of this contribution peaks at some wavenumber k=kk=k_*, and goes like k3k^3 for kkk\ll k_*, making it typically negligible on cosmological scales. The scale kk_* can be outside the horizon at the end of inflation, in which case \zeta=- (g^2 - \vev{g^2}) with gg gaussian. Taking this into account, the cosmological bound on the abundance of black holes is likely to be satisfied if the curvaton mass mm much bigger than the Hubble parameter HH, but is likely to be violated if m\lsim H. Coming to the contribution to ζ\zeta from the rest of the waterfall, we are led to consider the use of the `end-of-inflation' formula, giving the contribution to ζ\zeta generated during a sufficiently sharp transition from nearly-exponential inflation to non-inflation, and we state for the first time the criterion for the transition to be sufficiently sharp. Our formulas are applied to supersymmetric GUT inflation and to supernatural/running-mass inflationComment: very minor change

    Downregulation of miR-1266-5P, miR-185-5P and miR-30c-2 in prostatic cancer tissue and cell lines

    Get PDF
    Over the latest decade, the role of microRNAs (miRNAs/miRs) has received more attention. miRNAs are small non-coding RNAs that may serve a role as oncogenes or tumor suppressor genes. Certain miRNAs regulate the apoptosis pathway by influencing pro- or anti-apoptotic genes. We hypothesized that increases in the expression of B cell lymphoma 2 (BCL2) and BCL2-like 1 (BCL2L1) genes, which have been reported in various types of cancer tissues, may be due to the downregulation of certain miRNAs. The present study aimed to identify miRNAs that target BCL2 and BCL2L1 anti-apoptotic genes in prostate cancer (PCa) clinical tissue samples. Certain candidate miRNAs were selected bioinfor-matically and their expression in PCa samples was analyzed and compared with that in benign prostatic hyperplasia (BPH) tissue samples. The candidate miRNAs that targeted BCL2 and BCL2L1 genes were searched in online databases (miRWalk, microRNA.org, miRDB and TargetScan). A total of 12 miRNAs that target the 3'-untranslated region of the aforementioned genes and/or for which downregulation of their expression has previously been reported in cancer tissues. A total of 30 tumor tissue samples from patients with PCa and 30 samples tissues from patients with BPH were obtained and were subjected to reverse transcription-quantitative polymerase chain reaction for expression analysis of 12 candidate miRNAs, and the BCL2 and BCL2L1 genes. Additionally, expression of 3 finally selected miRNAs and genes was evaluated in prostate cancer PC3 and DU145 cell lines and human umbilical vein endothelial cells. Among 12 miRNA candidates, the expression of miR-1266, miR-185 and miR-30c-2 was markedly downregulated in PCa tumor tissues and cell lines. Furthermore, downregulation of these miRNAs was associated with upregulation of the BCL2 and BCL2L1 genes. An inverse association between three miRNAs (miR-1266, miR-185 and miR-30c-2) and two anti-apoptotic genes (BCL2 and BCL2L1) may be considered for interventional miRNA therapy of PCa. © 2018, Spandidos Publications. All rights reserved

    Downregulation of miR-1266-5P, miR-185-5P and miR-30c-2 in prostatic cancer tissue and cell lines

    Get PDF
    Over the latest decade, the role of microRNAs (miRNAs/miRs) has received more attention. miRNAs are small non-coding RNAs that may serve a role as oncogenes or tumor suppressor genes. Certain miRNAs regulate the apoptosis pathway by influencing pro- or anti-apoptotic genes. We hypothesized that increases in the expression of B cell lymphoma 2 (BCL2) and BCL2-like 1 (BCL2L1) genes, which have been reported in various types of cancer tissues, may be due to the downregulation of certain miRNAs. The present study aimed to identify miRNAs that target BCL2 and BCL2L1 anti-apoptotic genes in prostate cancer (PCa) clinical tissue samples. Certain candidate miRNAs were selected bioinfor-matically and their expression in PCa samples was analyzed and compared with that in benign prostatic hyperplasia (BPH) tissue samples. The candidate miRNAs that targeted BCL2 and BCL2L1 genes were searched in online databases (miRWalk, microRNA.org, miRDB and TargetScan). A total of 12 miRNAs that target the 3'-untranslated region of the aforementioned genes and/or for which downregulation of their expression has previously been reported in cancer tissues. A total of 30 tumor tissue samples from patients with PCa and 30 samples tissues from patients with BPH were obtained and were subjected to reverse transcription-quantitative polymerase chain reaction for expression analysis of 12 candidate miRNAs, and the BCL2 and BCL2L1 genes. Additionally, expression of 3 finally selected miRNAs and genes was evaluated in prostate cancer PC3 and DU145 cell lines and human umbilical vein endothelial cells. Among 12 miRNA candidates, the expression of miR-1266, miR-185 and miR-30c-2 was markedly downregulated in PCa tumor tissues and cell lines. Furthermore, downregulation of these miRNAs was associated with upregulation of the BCL2 and BCL2L1 genes. An inverse association between three miRNAs (miR-1266, miR-185 and miR-30c-2) and two anti-apoptotic genes (BCL2 and BCL2L1) may be considered for interventional miRNA therapy of PCa. © 2018, Spandidos Publications. All rights reserved
    corecore